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STUDY OF ERROR CONTROL CODING FOR THE U.S. POSTAL SERVICE
ELECTRONIC MESSAGF SYSTEM

Martin Nesenbergs*

ABSTRACT

A U.S. Postal Service (USPS) electronic message system
could incorporate many types of error control coding,
or no coding at all. This report reviews a variety
of possible codes, lists their advantages and
disadvantages, and selects a preferred alternative.
It turns out to be a concatenation of an inner
convolutional (rate 1/2 to rate 3/4) code with
Viterbi decoding, and an outer long block, high
efficiency code. The two codes have separate
functions, in the sense that the inner code

performs forward error correction and the outer

code does error detection only. The report
describes the structures, properties, and
implementations of the coding hybrid. After

that, the performance of the preferred coding

scheme is estimated. The resultant error
probability gains, which are shown to be con-
siderable, are balanced against system slowdown

and bandwidth expansion.

Key words: ARQ, coding gains, concatenated codes,
error probability, FEC, hybrid
operation, modem losses, throughput,
Viterbi decoding

1. INTRODUCTION
Digital communication via satellite has been
considered for the USPS electronic message system.
Extensive background studies (McManamon et al., 1974) have

been directed at the large scale system features, such as

*The author is with the Institute for Telecommunication
Sciences, Office of Telecommunications, U.S. Department
of Commerce, Boulder, Colorado 80302



useful frequency ranges, present and future traffic loads,

network configurations, transmission impediments, and state

of the art engineering tradeoffs. System design, operation,

and performance verification have to wait until basic feasi- A
bility questions are answered in the affirmative. One such

question concerns the quality of the received output data. i
Under the heading "System Performance", this multi-faceted
issue was raised in section 7, volume II of McManamon et
al. (1974).

The expected data rates, bandwidths, signal powers,
and the noise densities described above revealed that
perhaps the hardest performance criterion to be satisfied
is the bit error rate, also called error probability. A
target value of 10—12 was given for this error rate, but
at the time of the above report, it was not entirely clear
if or how this could be met. Section 7.8, volume II of
McManamon et al. (1974) suggested error control codes as
a possible alternative to ensure sufficiently low error
rates. Unfortunately, being quite brief and introductory
in nature, the above treatment raised more questions about
coding than it managed to answer. It also overlooked some
important and useful coding techniques.

Hence, the purpose of this study - a second look at
the error control codes as they could be applied today to
a high rate satellite data network. The approach taken
is (a) to consider all promising alternatives, (b) to
identify the most promising alternative as the "first
choice", (c) to verify that the first choice can be
practically implemented and operated, and (d) to estimate
the performance, i.e., gains and losses, of the proposed

scheme. .



Before proceeding with the coding tasks, we must
emphasize a few key points. The data network is assumed
to consist of two-way links over which forward and feedback
messagés can be sent, if needed. The data terminals are
of sufficient size to justify the initial cost and mainte-
nance of the codecs (short for encoder-decoder). The imple-
mentation of the coding part of the terminal will be shown
as relatively modest, of complexity somewhere between a
minicomputer and a microprocessor. Of course, the device
can always be incorporated in a large general purpose
computer (if such is available), or it can be constructed
as a special unit. Finally, the codecs are stipulated to
function perfectly, so as not to introduce additional errors
in the received messages.

2. OVERALL CODEC ALTERNATIVES

2.1. Candidate Codes

The question of whether to use any error control coding
at all cannot be answered without examination of the more
promising codec alternatives. This section compares the
relative advantages and disadvantages of the best presently
known coding schemes, and then ventures to select a "first
choice" overall error control system for a U.S. Postal
Service network. Perhaps even the best choice is not
good enough. Accordingly, later sections will scrutinize
the details of the candidate codecs, with emphasis on
implementation, operation, performance, and anticipation of
sundry difficulties.

The presence of one-way, two-way, and more elaborate
data channel arrangements within the satellite network



permits forward-acting error correction (FEC), automatic
error detection and repeat requests (ARQ), and any hybrid
combination of the two. Furthermore, most channel arrange-
ments can function well with a variety of known codec types
(Galiager, 1968; Massey, 1973; Wolf, 1973; Sastry, 1974).
The assortment of codes can be divided into three broad
classes: the block codes (Berlekamp, 1968; Peterson and
Weldon, 1972), the convolutional or tree codes (Wozencraft,
1957; Viterbi, 1971), and all the other codes. Among the
others, it is befitting to single out concatenated codes
(Forney, 1966; Zeoli, 1971; Hoffman and Odenwalder, 1972),
which are constructed interactively from two or more codes.
A previous investigation (McManamon et al., 1974)
indicated that a hybrid, FEC and ARQ, with joint
correction and detection roles, may be preferable over
other overall coding schemes for reasons of flexibility
and error correcting performance. Basically, a hybrid
arrangement can do nearly everything that the pure FEC
and ARQ options can do. When transmission conditions are
good and channel errors occur seldom, the hybrid resembles
FEC in throughput rate and error probability performance.
When the channel deteriorates and more errors confront
the decoder, the hybrid can be relied on to reject error
infested data portions. The hybrid then turns to ARQ
action and asks for repetition. No matter how low the
signal-to-noise ratio, or whatever the channel malfunction,
the output error probability can be kept at or below a
level determined by the code. The principles, implementation,
and estimated performance of ARQs appears the same for o
high and low speed data links. The low speed cases have

been extensively reviewed by van Duuren (1961), Nesenbergs ok

(1963), Townsend and Watts (1964), Benice and Frey (1964),




and Burton (1970). From now on we will assume that some
hybrid scheme is the most suitable for the high speed
digital message network.

Our next task is to compare the alternative imple-
mentations of the hybrid scheme. Here we have a number
of options, including the previously mentioned block code
with correction threshold (McManamon et al., 1974).
Besides that, there are quite a few others. A selected
list is tabulated in table 1. The table applies to
code rates in the 0.50 to 0.75 range, assuming negligible
ARQ slowdowns. The left hand column of table 1 lists
six alternatives for the hybrid codec. The other five
columns summarize the key codec characteristics in an
informative way. The final, i.e., the rightmost, column
attempts to rate the hybrid schemes in order of their
suitability for the system. Actually, only the first
three most promising schemes are seriously contemplated;
the others are dismissed as being not suited.

The three leading candidates are:

(1) Concatenated inner convolutional code and an

outer block code.

(2) Concatenated inner convolutional code with an

outer convolutional code.

(3) Convolutional code with computation threshold.

2.2. The Second and Third Finalists
Since considerable subsequent discussion will deal
with alternative (1), the intent here is to comment briefly
on choices (2) and (3). The second finalist (2) differs
from (1) only in the non-block nature of the outer code.
This is not a serious drawback, as the error detecting

power of the outer code is seemingly not lessened. The



Table 1.

0.50-0.75 range.

Comparison of Hybrid, FEC and ARQ,
alternatives.

] overall coding
Code rates are assumed in the

CHARACTERISTIC
Error Experi-
"Codec Rate mental Logic Speed| Cost and Relative
Type Performance| Evidence | Data Speed Complexity | Others Rating
Needs

Block code inter-
with: correc- leaving
tion/detection None Very for deep Not
threshold Poor known 10 high fades suited
Convolutional
code with ARQ
computation [Reasonable None sync
threshold to good known 3 Medium problem 3
Concatenated
code of inner Inter-
block and leaving
outer block Poor to may Not
codes mediocre Some 10 High help suited
Concatenated
code of inner
convolutional
and outer Nearly Well
block codes optimal tested 1-3 Low i
Concatenated
code of inner
block and
outer convo- ARQ
lutional None sync Not
codes Unknown known 10 High problem suited
Concatenated
code of inner
convolutional
and outer ARQ
convolutional Perhaps None sync
codes good known 1-3 Reasonable | problem 2
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only problem concerns frame timing of repeat segments in
the ARQ operation. The encoded sequence keeps continu-
ously evolving without any punctuation marks. Some
reference points, called commas, would have to be implanted
for identification of repeat segments. Both transmitter
and receiver must have exact knowledge where the repeats
start. and end, and which are multiple repeats. Otherwise,
the inner code of (2) can be the same as in (1).

The third finalist (3) is a non-concatenated convolu-
tional code with a modified decoding algorithm. Consider
an early form of a sequential decoder (Wozencraft, 1957;
Wozencraft and Reiffen, 1961; Fano, 1963; Savage, 1966;
Jacobé, 1967; Gallager, 1968; Forney and Langelier, 1969).
This device seems to be quite capable of forward acting
error correction, as long as the error rate is sufficiently
low. As the error rate increases, however, the computational
job of the sequential decoder grows. By necessity, every
decoder can handle a certain computation rate and not more.
When the noisy input data warrants computation in excess of
the computational ceiling, input data would be lost if not
for buffer storage. Unfortunately, a buffer of finite size
carries a certain probability of overflow and associated
implications of output errors or data loss. Both theory and
practice have shown that the buffer overflow is of primary
concern in the design and operation of sequential decoders.

In scheme (3) one proposes to do the following. Permit
a small buffer storage only. When the computation load
grows and indicates impending overflow, let the ARQ operation
take over. Clearly, this strategy can be used with different
types of decoders, including simplified versions of the
sequential machine itself. Since sequential decoding of

convolutional codes is a powerful (if not cheap) error




control tool, one expects that scheme (3) can be engineered

to perform well. The only nagging doubts concern the
previously mentioned ARQ frame timing and identification
for convolutional coding, and the lack of experimental #

evidence for this particular hybrid technique.

3. 1INNER CODE FOR THE CONCATENATED HYBRID

3.1. Convolutional Codes

In this section we start a detailed scrutiny of the
preferred alternative for the concatenated hybrid FEC and
ARQ scheme, that is, the first choice of table 1.
Specifically, we are concerned with the inner code in the
concatenated arrangement shown in figure 1.

A forward error correcting convolutional code seems
to be the best choice here. 1In fact, the FEC convolutional
coding systems that have been built, simulated, and/or tested
show an abundance of advantages over comparable rate block
codes (Kohlenberg and Forney, 1968; Heller, 1968, 1969;
Forney, 1970; Clark, 1971; Massey and Costello, 1971;
Viterbi, 1971; Cain, 1972; Cahn et al., 1973; Jacobs, 1974).
The crucial points can be summarized as follows:

(a) Convolutional coders are state-of-the-art now.
Systems have been built and tested in sufficient
numbers to feel quite confident about these
devices. One manufacturer has a number of ready
made versions on the market. While other type

FEC coders appear to require further research

v

and development, good convolutional coders are
already here.
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Hybrid FEC and ARQ scheme with concatenated coding.




(b) Convolutional coders offer relatively simple
and economical error control means.

(c) The performance of convolutional coders is as

- good or better than any other FEC system. We
will return to the performance specifics later,
when alternative decoders will be reviewed.

.(d) The technical features of convolutional codecs
are flexible. This is important for a large
system where input-output requirements, cause-
and-effect relations, and the consequences of
even isolated design decisions are hard to
predict. Some of the easily changed para-
meters or flexible factors offered by con-
volutional coding are: the code rate RI'
the constraint length K of the code, the
systematic or nonsystematic code structure,
the hard or soft (i.e., the number of
quantization levels) operation at the
demodulator output, synchronization cap-
abilities of some decoders, and so forth.

As shown in figure 1, the convolutional inner codec

consists of two parts. At the transmitter, an encoder

is used to pass data from the outer encoder to the satellite

channel modulator. At the receiver, a decoder processes
the demodulator output before passing it to the outer
decoder. Through their combined function, the inner
encoder-decoder pair execute the convolutional coder
operation. Typical, perhaps familiar, encoders are
shown in figures 2 and 3.

Figure 2 illustrates a rate R_=2/3 code, because three

i
output bits correspond to every two input bits. The two
input information bits appear as part of the output,

while a third bit checks the parity over selected past

10

1
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Figure 2. Convolutional encoder of rate 2/3, constraint length 48,
with 10 delay taps for each parity check.
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information bits. As shown, the parity check includes
exactly ten previous bits extending as far back as 48
information bits, or 72 total bits. The former is the
number of memory cells in the delay shift register shown in
figure 2, and is known as the (encoding) constraint length K
of the code. The code is said to be systematic, because
unperturbed input bits can be found at prescribed places in

the output sequence.

3.2. Systematic and Nonsystematic Aspects

‘The definition of a systematic convolutional code is
further elaborated in figure 3. Both parts (A) and (B)
show rate RI=1/2 and constraint length K=4 convolutional
encoders. Encoder (A) contains the original information
bits among its outputs; it is systematic. Encoder (B) is
nonsystematic, even though a mod-2 gate of outputs, XkGYk,
produces a delayed replica of the input sequence. The
reason for concern with these matters is to find the most
powerful convolutional codes, and not waste time on the
bad ones. It has been established (Bussgang, 1965; Lin
and Lyne, 1967; Heller, 1969; Massey and Costello, 1971;
Gilhausen et al., 1971, 1972; Forney, 1972, 1973; Massey,
1973; Paaske, 1974) that the performance of the best
nonsystematic convolutional codes is superior.

Since for block codes the two code families are often
indistinguishable, some explanation seems in order. The
performance of a convolutional code over any channel depends
largely upon the relative distances between codewords and,
in particular, upon the so called minimum free distance, df,
of the code. This df is defined as the least number of
1's that can occur over all non-trivial closed paths passing

through the all-zero state in the state diagram of that code

13




(Viterbi, 1967; Massey and Costello, 1971; Peterson and

Weldon, 1972; Forney, 1973). The state diagram of example

(A), figure 3, is shown in figure 4, and that of (B) in

figure 5. 1In the case of the systematic code (A), the 0l
passage through states 000, 100, 010, 001, and back to 000, ;
produces outputs 11, 01, 00, and 01. There are four 1l's

among the outputs, and no other closed non-trivial path

yields less. Hence, the free distance df=4 for the

systematic code (A). Furthermore, it can be shown that no

other systematic code with the same rate and constraint

length can have a larger free distance. In figure 5, one

traverses a different path through the states; namely, 000,

100, 110, 011, 001, and 000. The output sequence 11, 00,

01, 01, 11 implies df
turns out that df=6 is the best that one can do with
RI=1/2 and K=4.

=6 for this nonsystematic code. It

3.3. Decoder Types
The choice of constraint length K depends on the

decoder type used in practice. There are three prominent
decoding techniques for convolutional codes:

Sequential decoding

Feedback decoding

Viterbi decoding
All three offer their peculiar variations, refinements,
as well as advantages and disadvantages. A summary of
the leading options is given in table 2. As before,
the table is a review of pertinent inner code decoders
and their characteristics. The justification of the

)
)

claims is found in appropriate references (which includes
most of the list).

14
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Table 2.

Candidates. Code Rates Are Assumed in the 0.50-0.75 Range

Comparison of Forward Acting Decoders For Convolutional Inner Code

CHARACTERISTIC
‘ Error Experi-
Decoder Rate mental Logic Speed Cost and Relative
Type Performance | Evidence |Data Speed Complexity | Others Rating
Sequential
with Fano Some Extremely
algorithm Great tests 2-4 high 4
Sequential
with stack,
bucket, and Further
other Some Quite progress
variations Great tests 1.5-2 high likely 3
Feedback
(general) Poor 1 Low 5
Feedback
(threshold Very Some Very
or MLD) poor tests 1 low 6
Many

Viterbi with Well good
hard decisions Good tested 2-3 Reasonable | options 2

Nearly Many
Viterbi with optimum Well good
soft decisions and robust tested 2=3 Reasonable | options 1




Sequential decoding evolved from the original work of
Wozencraft (Wozencraft, 1957; Wozencraft and Reiffen, 1961),
to the Fano algorithm (Fano, 1963; Massey and Sain, 1968;
Gallager, 1968), to later stack, bucket, bootstrap, and .
other variations (Zigangirov, 1966; Jelinek, 1969; Massey,

1973). All of these techniques can work with long

constraint lengths and so produce powerful error correction
performance. The performance has been verified by tests
and/or simulation (Forney, 1967; Forney and Langelier, 1969;
Lumb, 1969; Cain, 1971; Layland and Lushbaugh, 1971;

Forney and Bower, 1971; Gilhausen et al., 1971; Gilhausen

and Lumb, 1972; Odenwalder et al., 1972; Cahn et al.,

1973; Dodds, 1973). More recent sequential decoding versions
have sought to reduce the computation load, the associated
logic speed and the memory requirements, while maintaining
high level of performance. To a large extent, such
objectives have been met by the Zigangirov (1966) and Jelinek
(1969) stack method, and other recent extensions.
Unfortunately, the complexity of sequential decoders is still
large and burdensome.

A far simpler family of convolutional decoders are the
feedback decoders, and the related threshold or majority
logic decision (MLD) decoders (Massey, 1963; Rudolph, 1967;

Gallager, 1968; Goldman, 1969; Peterson and Weldon, 1972;

Massey, 1973; Wolf, 1973). A general feedback decoder is

illustrated in figure 6. Note the crucial role of the

syndrome register. Through a usually prewired or fixed

read-only storage logic, the syndrome dictates output

correction as well as its own update, called "feedback." '
A special case of the feedback decoder is the fixed

threshold count-of-1's MLD decoder. Such an MLD device it

is shown in figure 7. This decoder happens to decode the
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rate 2/3 code introduced earlier in figure 2. The two

threshold gates M, and M2 serve the two parallel information

registers. The finction of the two gates is an identical
majority poll of the five inputs shown. Thus, if the
number of input 0's is N(0) and the number of input 1l's
is N(1), then

Gate Output

0 if N(0) > N(1),

=1 if N(0) < N(1).
A 1 at the gate output inverts the appropriate informa-
tion bit and, by feedback action, deletes either

. N(1) - N(0) > 1
or

N(1) - N(0) -1 >0
net 1's from the syndrome register.

The codec consisting of encoder (fig. 2) and decoder
(fig. 7), implements a rate RI=2/3 self-orthogonal code.
Its operation is based on, so called, "disjoint and full"
difference triangles (Massey, 1963; Peterson and Weldon,
1972):

g 8 19
16 6 11 12
5 1 .. 7 4 8
2 17 18 23 3 10 14 22

The free distance of this code df=6 is nearly optimal for such

self-orthogonal codes, and yet only two errors are always cor-

rectable among 72 channel bits (Robinson and Bernstein,
1967). This error correcting scheme is not very powerful
(it further worsens as constraint length increases), but

the codec cost and complexity is extremely low.
3.4. Viterbi Decoding

The preferred alternative in table 2 uses the Viterbi
decoding algorithm (Viterbi, 1967, 1971; Heller, 1968,
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1969; Omura, 1969; 1971; Clark and Davis, 1971; Clark, 1971;
Heller and Jacobs, 1971; Kobayashi, 1971; Viterbi and
Odenwalder, 1972; Batson et al., 1972; Forney, 1972; 1973;
Massey, 1973; Wolf, 1973; Jacobs, 1974). One must distinguish
two cases. The "hard decision" case refers to demodulator
output and decoder input being an ordinary binary decision,
zero or one. The "soft decision" admits more than two
quantized demodulator outputs. A typical case of eight

quantization levels is:

000 —--====—=—- a sure zero,

001

0lo0

011l --—-——=————- a doubtful zero,
100 -=-=-———u—- a doubtful one,
101

110

111 === a sure one.

There are Viterbi decoders with an incorporated switch to
either use or omit the less significant quantization digits.
Thus, an operator can choose between the hard and soft
options. Both options have been explored and tested.

While the speed requirements and costs are comparable,

one finds the soft version superior in performance.

Before turning to the performance numbers of the various
alternatives, it may be beneficial to get an elementary grasp
of the operation and implementation of our first choice -
the Viterbi decoding system. A simple illustration can
start with the encoder of figure 3, part (B). Here, the
(encoder) constraint length is K=4, roughly a half of the
K=6 to K=10 values used in actual systems. The rate
R_=1/2 code is nonsystematic, with the state diagram given

I
in figure 5. Each input bit directs the system from a
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previous state to the next state. If the present state is
110, then input 0 causes a transition to state 011 and input
1 to state 111. The output bits produced by register content
0110 are 01, and so forth. These output bits are shown in
the state diagram (fig. 5) next to the transition arrows
between states.

The trellis diagram is an equivalent, somewhat longer,
and, in a way, a more vivid description of the encoding
process. The corresponding trellis diagram is shown in
figure 8. Note again how a single input bit 0 takes the
encoder from state 110 to state 011 and produces output 0l.
A length L non-zero input sequence gives forth a 2 (L+3)
long output. An example of L=5,

okl - IR O, i - Ty Yoo TR s Nt
L
yields an output
v« Q0TI B 0L 30 1100 3X .00 2
- 2 (L+3) T

The extension of L to L+3 describes the merge properties

of a non-zero path from the all-zero path in the trellis.
It is also an important delay parameter to be used later
in the decoding process. As explained elsewhere, the
Viterbi algorithm ascertains and, if need be, modifies
the estimated most likely path through the trellis. With
a diminishing probability, some path updates can take place
after considerable delay. 1In communication application,
outputs cannot be delayed arbitrarily long, but must be
delivered after some fixed -- preferably small -- delay.
It turns out that, through a process called merging of
paths, the finite delay parameter L serves to terminate
the decoder path memory, and to deliver the output bits
on schedule. The effect of various L choices has been
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Figure 8. Trellis diagram and encoder outputs.



determined by Gilhausen et al. (1971). It is shown that
L=4K, which is a delay four times the constraint length,
for all practical purposes gives as much performance gain
as can be expected of the arbitrarily long memory. In
the previous example of figure 3 (B) and figure 8, the
L=5 value is thus too short for best results, and entails
at least a 1 dB signal-to-noise ratio loss. A higher para-
meter value, such as L>16, should be used to avoid the loss.

The decoder selects the most likely path by contin-
uously keeping track of appropriate path likelihood
measures, commonly called metrics. The multitude of paths
are all constituted of branches, that is, directed links
between successive states. When a set of branches combine
to form a path, the branch metrics add to form the (total)
path metric of that path. As an illustration, consider
the hard decision example of figure 8. The bookkeeping of
branch and path metrics is shown in figure 9. If the
original input data sequence is

00 323700 0%
the encoded and transmitted sequence is
0000 11 00 10 109111,

For a moment, assume no errors in transmission, so that
the received sequence agrees with the transmitted one.

A metric that is defined to count disagreements will assign to

the all 0's path a sequence of branch metric/path metric
pairs

0/0 0/0.2/2 /2 /% X% L)5 2/7,
with a final path metric 7. Likewise, the all (L=5) 1's
path would be encoded as

1Y . 60:10 01 &1i40 01:11,

and the metric pairs would evolve as

2/2°0/2 1/3 1/8 2/6:0/6 0/6 0/6,
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causing the final metric 6. In fact, all conceivable paths
will have nonzero metrics, except for the correct path,
where only 0/0 metric pairs arise. Note, that the 3-bit
suffix does not carry information. Its sole purpose is to
merge the paths of the trellis.

Next, permit three errors to infest the same trans-
mitted sequence, as shown by the received sequence

00 o 11 Lo 10 oo o1 11.

From figure 9, one sees how the branch and path metric
picture changes. While the all 0's path shows a total
metric 8, the best final-zero path now has a metric of 5.
Likewise, the all 1's path, with a total metric 9, is
worse than the best final-one path. The latter has a path
metric of 3, and through back tracing it leads to the actual
correct path. Thus, the correct path is unique, it is
identifiable, and the correct decoding output is delivered.

Of course, there are other error patterns that cannot
be corrected. 1In figure 10 we show a five error event
that causes erroneous output. An incorrect path with a
total path metric 2 is selected ahead of the correct path,
which turns out to have a path metric 5. As a consequence,
the original data sequence

0- k1 0 100490
is incorrectly decoded as
0100 10 09,

This is not too unfortunate, as the five original
channel errors are reduced to a single output error.
For longer delay parameters L and other error events, one
anticipates output errors to occur in bursts with
durations typically of the same order as the constraint
length K of the code.
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3.5. Performance on the Ideal Channel

Simulated ideal channel performance of convolutional
FEC codes is summarized in figure 11. The ordinate is the
output. bit-error probability, Py and the abscissa is the
normalized signal-to-noise ratio, Eb/N0 in decibels.
Quantity Eb is the signal energy per information bit, and
N0 is. the one-sided noise spectral density. The curves of
figure 11 depict the binary (i.e., M=2) coherent PSK channel
in the presence of white Gaussian noise. As discussed
before (McManamon et al., 1974), the main features and
results readily generalize to the other MPSK modems, as
well as other channel models.

The four vertical lines in figure 11 are designated
as channel capacity limits. For instance, with no
restriction on signal shape or duration, Shannon's

ultimate theorem for error-free reception

- S
RI =W log2(l + N)

may be contemplated. If one divides by rate Ry and lets

bandwidth W assume larger and larger values, then

= E

n 2 = 4n (]_+§§ob)RI W—-W:% #
If so, the ultimate zero-error operation cannot be
achieved unless Eb/N0 is larger than &n 2, or -1.6 dB.
If one insists on hard decision operation, the capacity
threshold is multiplied by a factor n/2, or 2.0 dB. To
compensate, Eb/NO must then be above 0.4 dB. Likewise,
if one permits arbitrarily fine soft decisions to accompany
optimal sequential decoding, then Eb/N0=1.4 dB is needed.
And, if one restricts the bandwidth to RIW=1/2 and specifies
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the ideal
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PSK hard decision operation, then more than 3 dB is
sacrificed and the rightmost threshold Eb/N0=4.5 dB is
required.

Without coding, the theoretical modem performance is
a smooth function of Eb/NO' The indicated curve crosses
all the capacity limits and upper-bounds all the observed
data in figure 11. The present observed coding data extends

3 46 1077 (Forney, 1970; Forney

over the p, range from 10
and Bower, 1971; Gilhousen et al., 1971; Batson et al.,
1972; Odenwalder et al., 1972; Cahn et al., 1973; Jacobs,
1974). Three types of convolutional codecs are indicated.
They are:
Sequential decoding, rate 1/2, and two different
data throughput rates, 1 Mbps and 40 Mbps.
Hard decision.

Feedback decoding with rates 1/2 and 2/3, and
constraint lengths 10 and 8, respectively.
Hard decision.

Viterbi decoding with rates 1/2 and 3/4, and
constraint lengths 7 and 9, respectively.
Hard and soft decision.

In support of earlier table 2, figure 11 shows the
mentioned observed performances. Error correction per se
improves with lower coding rate R_ and higher constraint
length K. At pI=10_7
back decoding scheme requires roughly Eb/N0=9 dB. Viterbi

I
, for example, the rate RI=1/2 feed-

decoding without quantization appears only slightly better,
while hard decision sequential decoding offers a 3 dB
improvement at the pI=lO_7 level. There is some
uncertainty about the actual gain, as the complexity and
speed of logic affects implementation and performance for

sequential machines. Such is the nature of the 1 dB




advantage seen at the 1 Mbps data rate tests over the
40 Mbps tests.

Fortunately, the performance of Viterbi decoding can
be substantially improved by the previously cited soft
decision operation. 1In figure 11 two such 8-level
quantization curves are shown. They depict code rates
RI=l/2 and RI=3/4. At pI=10-7, the rate 1/2 code
is comparable to the sequential hard decision case, and
requires a mere Eb/NOZ6 dB to perform that well. While
all this seems remarkably good, one is reminded of the inter-
est in the objective of an overall 10-12 error probability.
The performance extrapolation beyond observed data, toward
lower Pr values, is indicated in figure 1l. The asymptotic
pI+0 behavior is derived from the code distance structure,
more specifically from the free distance df introduced
above (Jacobs, 1974). Note, that Eb/N0=7.3 dB seems to
provide pI=lO_12 for soft decision, rate RI=l/2, Viterbi
decoder. This signal-to-noise ratio should be contrasted
with Eb/N0=l4.4 that is required by uncoded ideal theo-
retical operation at the same Pr level, and the considerably
larger extrapolated-measured requirement of 20.5 dB, or

even worse (McManamon et al., 1974).

3.6. Performance on Realistic Channels

Actual channels, even on satellite links, are known
to depart from the ideal white Gaussian noise model. There
are many reasons why modems fall short of optimal performance
and suffer a variety of operational losses. As a conse-
quence, the previous ideal performance estimates must be
modified. We will do so next, with particular attention
to the two RI=1/2 and RI=3/4 Viterbi soft decision decoders iy
described ea:lier and highlighted in figure 1ll. The

32




performance at other rates, such as RI=2/3, can be inter-
polated as needed.

The definition of gain and loss terms is given in
figure 12. First, the code redundancy carries a loss, the
so called code rate loss, that equals 3.0 dB for the RI=1/2
code, and 1.2 dB for the RI=3/4 code. This loss is shown
in figure 12 as RI(dB), a constant displacement of the
uncoded modem performance curve for both ideal and realistic
channels. Assume next that error statistics are as simple
as possible, such as for a memoryless binary symmetric
channel, where errors occur with probability Pg- If the
error probability has a given value, pe=pe+, a code with
rate RI may be able to reduce Pe to a new level, pe*, which
could be denoted pI* in deference to the inner coder.

For the ideal channel, such as given in figure 11, the

basic coding gain, Gb(dB), is defined as the net theoretical
saving of signal-to-noise ratio Eb/NO(dB) through the use

of the code. 1In figure 12, the coded modem curve intersects
pe+ at the ideal coded operation point. This Eb/NO value

had better be less than the pe* intersect with the uncoded
curve, for the basic coding gain Gb to be positive.

The actual coding gain, Ga(dB), is defined in a similar
way. Note that the actual modem-channel pair must expend
more signal energy to achieve the same performance, pe+ or
pe*, as the ideal. Furthermore, at specified P levels
these degradations can be different. One has different
modem losses at different performance levels. Thus in
figure 12, the modem loss at pe+ is shown to be Lc(dB),
and at pe* il 1 Lu(dB). Typically, Lu>Lc implies that
realistic coded system requires more Eb/N0 than does the
corresponding ideal coded system, but not much more. One

defines, therefore, the actual coding gain as the net
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Eb/NO (dB) saving under the actual channel conditions.

One sees from figure 12 that

Ga = Gb Rt T 75T (dB)
must hold, and that Ga>Gb is apt to be true. The last
assertion has validity for those real life pevs.Eb/N0 plots
that flatten out and display an irreducible error rate.
Then there may exist pe* levels at which the actual coding
gain is infinite.

Recent data on applicable coding gains is summarized
by Jacobs (1974), and the references listed. The gains can
be extended to our ideal and extrapolated-measured curves,
under all the specified conditions. For both M=2 and M=4
coherent PSK, rate R =1/2, constraint length K=7, eight
level soft decision, a Viterbi decoder should perform as
indicated in figure 13. 1In the center of the figure, a
desired pe*=10"7 level is identified. At that level,

L, = 3,5 dB,
L= 1,8 dB,
C
G. & 7.5 as,
a
G, = 5.8 dB.

The actual coding gains have been computed for various
desired pe* levels. The results are given in figures 14

and 15 for the same two Viterbi arrangements cited earlier.
Note the more or less invariant 1 dB Eb/N0 difference between
the rate 1/2 and rate 3/4 codes. If the uncoded extrapolated-
measured data calls for 20.5 dB signal-to-noise ratio at

the 10_12
of the same reliability at 10,3 dB and 11.3 dB, for the

two rates considered. This actual coding gain of 9 to

level, then the present FEC scheme seems capable

10 dB appears considerable, yet it is not the end of the
story. More decibels can be conserved by the outer code,
which is the topic of the next section.
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Figure 15 also emphasizes that coding can be effective
to reduce so called irreducible error rate levels. The
effect is demonstrated by the horizontal lines to the right
in figure 15. 1If, for example, the extrapolated-
measured curve bottoms out at p1.=10—3 due to whatever
malfunction, the output error probability after decoding
will be roughly 10”8 and 10”7 for the codes with rates 1/2
and 3/4, respectively. An irreducible level at 10'-4 can
be brought down to 10-13 and 10_11. All irreducible levels
lower than 5(10”°) can satisfy the 10”12 objective by the
FEC action alone. The fact that the outer ARQ coding can

help even more will be described next.

4. OUTER CODE FOR THE CONCATENATED HYBRID

4.1. Codec

The selection of a hybrid FEC and ARQ scheme was
discussed in section 2. Moreover, table 1 and pertaining
arguments led to the announcement that a concatenation of
an inner convolutional code with an outer block code has
the most promise of all the alternatives considered. The
overall system was briefly sketched in figure 1, identifying
the outer code with the ARQ function. That outer code will
be the topic of this section. Matters such as the encoder,
the decoder, and the role and the performance of the error
detecting outer code will be elaborated.

To begin, the outer code selection is relatively straight
forward. Whatever the length, n, of the block code, one uses
an almost negligible number of parity check bits for error
detection. The abbreviation (n,k) is used for such a block

code, where k is the number of information bits and n-k the
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number of check bits. It seems' reasonable to start with
block length n somewhere between 10,000 and 1,000,000.
Redundancy of 1 percent [i.e., the ratio (n-k)/n expressed
in percent] then provides 100 to 10,000 check bits. As will
be shown later, this number of parity checks may be super-
fluous and a much smaller percent redundancy may suffice.
Conclusion: the redundancy loss for the outer code of rate
R0 is negligible, Roél.

Past experience with ARQ systems (van Duuren, 1961;
Nesenbergs, 1963; Townsend and Watts, 1964; Bernice and
Frey, 1964; Burton, 1970) has shown that the block length
n affects primarily the throughput rate R. Roughly,
throughput vanishes in an ARQ system whenever the input
error probability exceeds 1/n. Hence, n larger than 106
appears undesirable. Similarly, the number of check bits
n-k determines the likelihood of the n-bit word containing
undetected errors.

The outer encoder need not be more involved than a
standard linear feedback shift-register (Gallager, 1968;

Peterson and Weldon, 1972). The specific array of feed-
back taps can be chosen to guarantee as high a minimum
distance as is possible for BCH or other known block codes.
An encoder so derived is shown in figure 16. Used with

k information bits, k not exceeding 32,737, the n-k=30
added parity bits ensure that all four or less inner
decoder output errors are detected. When the number of
errors is five or more, the probability of detecting the
errors is still exceedingly high.

The outer decoder, figure 17, is almost a duplicate o
of the outer encoder. The device simply verifies whether
all n-k parity checks are satisfied by the received code word. .

If not, the repeat of the word must be requested from the
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transmitter, and the present word output must be disabled.
This process is known as the ARQ action. If all parity
checks are satisfied, there is no need for ARQ action.
Figure 17 also permits a secondary disable order to be
used by the receiver terminal for unspecified reasons.

To select the block (n,k) code and the appropriate
codecs, a convenient shorthand for the feedback taps
should be used. Thus, the nine taps in figures 16 and
17 can be represented in binary as

101 001 100 011 000 000 001 000 010 000 3 A
or in octal as 5,1,4,... or by a conventional numerical
listing of the locations of the taps:

0,2,5,6,10,11,20,25,30.
Whereas the coding literature seems to prefer the binary
and octal representations, we shall employ the numerical
location list. As seen from figures 16 and 17, such a
location list consists of all registers with exterior
connections. It is also evident that the first (entry 0)
and the last (entry n-k) taps must be always present.
Hence, one needs only the list of the interior taps, that
is, those taps that involve exclusive -OR gates. 1In
figures 16 and 17 there are seven such interior taps, namely

2,5,6,10,11,20, and 25.

There are still nearly 2" ¥ 1 gifferent codecs possible

via specifications of the shift-register taps. In table 3
we present a short selection of codes that happen to belong
to the BCH category (Berlekamp, 1968; Peterson and Weldon,
1972). Note that the block length n can be increased
relatively rapidly, compared to the modest number of
registers, n-k. The number of inner taps seems to grow
more or less proportionally to the length of the shift-

register.
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Table 3.

Possible Error Detecting Codes for ARQ

Upper Number of Number of Numerical listing
bound on registers, inner taps of all the inner
block length same as to exclusive taps, same as ex-
n n-k -OR gates clusive -OR gates
4 095 12 3 1,4,6
4 095 24 13 2,3,4,7 8,9,10,11 12,14,15,16,22
8 191 13 3 1,3,4
8 191 26 1 | 1,3,6,8 10,12,16,18 20,22,23
16 383 14 3 1,6,10
16 383 28 11 3,5,6,9 10,14,15,18 19,22,24
*32 767 30 7 2,5,6,10 11,20,25
32 767 60 33 4,6,7,8 12,13,15,16 17,18,19,21
22,34,25,28 29,31,35,36 37,39,40,42
43,45,46,47 50,54,56,57 58
65. 535 32 15 1,2,3,6 7,8,10,13 16,17,18,21
23,25,27
65 535 64 28 2,10,15,18 19,20,23,26 28,31,33,35
36,37,40,41 42,44,45,46 47,49,52,53
55,59,60,62
131 071 51 21 1,2,3,4 5,7.,8,9 12,13,14,17
22,26,27,34 35,36,37,38 42

*The encoder of this code is shown in figure 16, the decoder in figure 17.




4.2. ARQ Performance

The performance of the outer ARQ codec invoives at
least three criteria:

(i) the throughput rate R, a quantity that is

' related but not identical to the code rate RO;

(ii) the output word error probability Pyi

(iii) the statistics of delays and random queues

' caused by the ARQ action, and the associated

storage overflow implications.
In this section we will concentrate on the first two
entities, R and PO' for a complete ARQ duplex arrangement,
as outlined in figure 18.

Each terminal is both a transmitter and a receiver. It
transmits forward data and ARQ acknowledgements for the
return link. It receives return link data and the ARQ
control bits concerning previous forward transmissions.
The transmitter handles incoming information, also called
"Data In," in groupings or words denoted Wl’ W2,.... While
Wl is enroute, the path delay is such that W2""’WD have
also departed from the transmitter. Quantity D thus
measures the two-way delay in units of data words. Before
transmission, each word Wi is stored for eventual future
repetition, if requested by ARQ. The word Wi is also
joined by two short system control statements Aj and Qk'
Statement Aj is the ARQ acknowledgement for some word,

Wj, received over the return channel. The functional role
of Aj is straight forward:

Aj = 0 means OK, or no errors detected;
= 1 means NOK, or some errors detected.
Thus, a single information bit suffices for Aj.

The function of Qk is to qualify the accompanying

word Wk' Perhaps it's a new word, or some previous
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word W, that is being repeated. The nature of the repeat,

such as due to A, being NOK, or A, being erased (lost),

or some system oﬁtage, may be impgrtant. Loosely speaking,
Qk is ‘an indicator for the ARQ loop's present state. The
following short table outlines a possible four state scheme
for the ARQ duplex of figure 18:

A Q0 (OK)~>Clear Wl’ Store WD+1' Send C(A,Q0,W
Q01 (NOK)-*Keep Wl’ Send C(A,Ql,wl)
QE (Erasure)->Keep Wl' Send C(A,QE,Wl)
QS (System)->Keep Wl’ Send C(A,QS,Wl)
Here, two bits suffice to characterize Q. After

D+1)

assembling, the three parts, Ai’ Qj’ and Wk' are encoded
together and become C(Ai’Qj’Wk)’ or C(A,Q,W) for short.
Because their bit count is so small compared to W, the
segments A and Q can be safely ignored in data rate
calculation.

The key to performance (i) and (ii) calculation is
given by the rules of the ARQ. A synoptic start is offered
in figure 19. There are three diagnoses possible on both
the forward and feedback paths. A word can emerge from
the inner decoder either correct, with errors that are
detected, or with undetected errors. The same things happen
to the ARQ acknowledgement, except that an incorrect A is
said to be transposed, and a doubtful A is said to be
erased.

The ARQ control logic contained in the duplex loop
(fig. 18) determines the consequences for all nine alter-
natives shown in figure 19. Without going into too much
detail, such a diagram can still be helpful. It assists
to compute, to upper bound, or to lower bound performance

indicators, such as R and PO. In what follows, we shall
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be content to estimate some very primitive bounds on
the two quantities.

Let pn(j) be the probability of j errors in the n bit
word, where n is a large integer and 0<j<n. This probability
is observed in the data stream, where it emerges from the
inner decoder and enters the outer decoder. We assume that
the same pn(j) holds for the forward and feedback paths,
but that the two links are otherwise statistically indepen-
dent. It follows that the throughput rate R must be
bounded by
%pnz(o) - %1— 3

This allegation is verified by turning to figure 20 and

=] oy

pn(O).

considering the least possible repeats, as well as the
most possible, in the ARQ synopsis (fig. 19).
For example, the left side of this inequality follows
from
R RIRO Pr{Wl accepted in the most repeat case}l,
where R0=k/n and
Priji.s¥ = Pr (A; correct) Pr (W, correct)
+ Pr(Al correct) Pr(Wl undet. error).
When acknowledgement A1 is shorter than word Wl’
Pr(Al correct) > Pr(wl correct) = pn(O) 5

and

R k 2
2 Res 00
I
Likewise, the right side follows from
R < RIRO Pr{W1 accepted in the least repeat case},

where now
Brdii.) - Pr(Wl correct) + negligible terms.
The ARQ word-error probability behavior is somewhat
different, and calls for a different characterization (see
£1Qg. 21):
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P, > Pr (accepted W, has some error in the least error case)

Pr(wl undet. error)

Iv

Pr(W1 correct) + Pr(W1 undet. error)

v

Pr(W1 undet. error) .

< Pr (accepted W, has some error in the most error case) »

1
f_-Pr(Wl undet. error) + Pr(Al transposed) .

Since acknowledgement A,y is an extremely short segment (such
as one or two bits) of an n-bit word, one expects

| Pr(Al transposed) << Pr(Wl undet. error).
One can show, for example, that

Pr(Al transposed)

= (constant) d s
PrTW1 undet. error) n

Here, d stands for the minimum distance of the code. A
BCH code with n=2"-1 and n-k=mt has d>2t+l, as is well
known (Berlekamp, 1968; Gallager, 1968; Peterson and
Weldon, 1972). Thus, d<<n even for the best codes, and
especially for n>>1. One concludes that the upper and
lower bounds are indistinguishable (Nesenbergs, 1963;
Lucky et al., 1968):

P

K]

0 Pr(Wl undet. error)

I

(n-k) T
j=a °

The bounds on the throughput rate R and the outer coder

word-error probability P, have been computed for two

0
channel models. The first model, denoted as MOD I, is

the memoryless binary symmetric channel with probability

L3 TR n-j

Py- For MOD I:
p, ()

1A
(]
IA

=}




The computation of sums of such binomial terms is an old
problem, known to be difficult for large n and small Py
which is exactly our case. An approximation far better
than the Chernoff bound or the direct Gaussian approxi-
mation is given by the asymptotic expression (Gallager,
1968),

np 4
I n “aads o+
(‘3‘) i

- d + %
/21d (1 P H)n ( an)

whenever an<d. If anzd, one can conveniently upper bound

’

3 n-j
g ( )pI(l e gl R

the sum by unity.
The second channel model, denoted as MOD II, postulates
error bits to be effectively bunched in solid bursts of

length v. It follows from a Poisson approximation that

for MOD II:
np._ \
exp (- _Ul) ’

pn(j) = an/(an + V),

Il

pn(O)

Il a8

j=d
where again an<d. To carry out the computation, we have
used three values v=5, 15, and 45.

The computed results are given in a host of figures,
starting with figure 22. The first three figures, 22 through
24, depict the ARQ throughput rate R/RI as a function of the

inner codec error probability Py all for block length

»3
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n=10,000. The figures differ in k value: Figure 22 has
k=9,900, figure 23 has k=9,950, and figure 24 has k=9,990.
Each figure has eight curves. The leftmost two curves
belong.to MOD I, while the other six curves belong to

MOD II. Furthermore, each adjacent pair of curves, as

for MOD I, represent the lower and upper bounds on the

outer .code throughput rate R/RI. The three lower and upper
bound pairs for MOD II are descriptive of solid burst lengths
v=5, 15, and 45, respectively.

One notes the following features:

(1) The effect of k is a very minor change in the
vertical scale of the curves. Since this
effect is entirely predictable, one can omit
k dependence in other similar plots.
Accordingly, figures 25 to 28 are all for
k/n=0.99, but with different n values.

(2) The upper and lower bounds for the same
channel model are separated very nearly by
a factor of 2 in the horizontal, Prs dependence.

(3) One can view MOD I as a special v=1 case of
MOD II. The effect of different 21 and Vo
values then seems to correspond to a horizontal
Pr shift by a factor vl/vz. Figure 25, for
example, has a throughput upper bound R/RI=0‘5
for MOE I at pIEZ(lO_S),_Zor MOD II, v=5, at

, v=15 at pIE3(lO ), and so forth. An

increase in error bursting, v, benefits the

pIEIO-

throughput rate. Unfortunately, realistic
channels, including inner Viterbi decoders, are
not sufficiently well understood to state what

v value is applicable. One can speculate
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that for nonsystematic convolutional codes,
with constraint length K=8 and delay
parameter L=40, a good guess could be v=5. But,
without further evidence the entire matter is too
vague to tell.

(4) As another rough rule of thumb one can note:

R/R; = 0.9 at Pr = %H '
Z 0.6 at 2=,
z 0.3 at ==,
= 0.1 at = %2

Thus, most of the throughput decline takes place
near pI=v/n. The p; range, within which R/RI drops
from 0.9 to 0.1, is given by

pI(R/RI = 0.1)
pI(R/RI = 0.9)

= 20 ,

a quantity that seems surprisingly independent
of the channel burst parameter v.
The second performance criterion, the outer code word

error probability P is graphed in figures 29 to 31. It

’
appears that P0 hasosome dependence on channel models,

such as MOD I or MOD II, with an increase in v usually
implying a relatively small P0 improvement. Moreover,
since the outer decoder monitors the concatenated coding
output, the overall output word error probability is simply
P=P0,
p, is related to P

for the n-bit word. The output bit error probability,

0 also, but not in a known simple way.

The obvious bounds,
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can be sharpened (Viterbi, 1966) under some specific and

elaborate circumstances. Unfortunately, all such refine-

ments remain relatively ineffective compared to the gross

2—(n—k) bound on PO. To assure that P and p never exceed
10_12, it suffices to set
19~
n-k > TogZ ~ 40 .

This is done in figure 31, where n-k=50 yields an effective
error detecting scheme with an almost insignificant 0.5
percent redundancy for block length n=10,000.

The third performance criterion (iii) dealing with
random ARQ delays and queues will not be commented on,
because of insufficient understanding on our part. The
matter seems important and, if time permits, should be
studied in the future. The large path delay on satellite
links compounds the ARQ processing difficulty (Balcovic and
Muench, 1969; McGruther, 1972; Abramson and Kuo, 1973;
Lucky, 1974; sastry, 1974) and, by all indications, calls

for innovative ARQ designs.

5. OVERALL PERFORMANCE

The concatenated hybrid, FEC and ARQ, coding has an
overall performance yet to be described. The advantages
and disadvantages are both consequences of inner and outer
coder features. For instance, the rate slowdown or band-
width expansion is a drawback caused by both coders, though
in different ways. Another disadvantage is the implementa-
tion, maintenance, and other complexity related costs.

The advantages boil down to one: more reliable data output.




This error rate reduction, of course, is also a resultant
of the workings of both codes. Previously, we have
described the two codecs separately; now we shall combine
them and summarize the overall performance.

First, consider the overall output error probability.
As pointed out in the ARQ performance discussion (sec. 4.2),
this performance criterion is for all practical purposes
the same P0 as observed at the ARQ output. It was shown
that a modest investment in n-k>40 parity check bits for
the outer code implies overall word and bit probabilities,
P and p, at or below 10-12. Other parameters and system
arrangements may reduce the error rate further, but not
substantially. One concludes that a block code with
n>10,000 and not less than 40 parity checks (which amounts
to 0.4 percent redundancy) will provide error control to
keep the output binary error probability at the desired
level.

Our next concern is the overall throughput rate of
the hybrid scheme. The work on inner and outer coders implies
that the overall rate R cannot exceed the product of the
two constituent rates R. and R.,. If there are no ARQ

I 0

repeats, then R=RIR0. In the presence of repeats, R<RIR0.

The inner rate RI was assumed to be 1/2, or 3/4, or perhaps
2/3. The outer rate R0 is further reduced by ARQ. Since
the effects are complicated, exact calculation was abandoned
in favor of simpler bounds. Such upper and lower bounds

on the relative rate R/RI were presented in figures 22 to
28. The abscissa for these plots was the binary error prob-
ability, P at the Viterbi decoder output. The pI itself
was shown to be a function of channel signal-to-noise ratio,

Eb/NO(dB), in figures 13 to 15, and subject to many

assumptions. A merger of these two families of curves
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produces the sought overall throughput rate, R, versus the
signal-to-noise ratio, all capable of meeting the 10_12
binary error rate objective. Four such relationships are
plotted in figure 32. While many more such curves are
possible, the given four appear rather typical. Note

the pronounced Eb/N0 threshold effect. Above the threshold,
data passes with negligible or no slowdown. Near the
threshold, repeats and non-repeats occur with comparable
frequency. Further below the threshold, the throughput

R ceases and the link gets turned off by the ARQ.

Since different conditions and parameter choices give
cause for distinct curves in figure 32, it seems useful to
graphically lump together and characterize the various
threshold curves. Such an attempt has led to figure 33
and, alas, the resultant mastercurve does not seem to
be an accurate model for specific curves (as plotted in
fig. 32). Hence a warning: Use figure 33 for rough
estimates only. A key parameter in figure 33 is the n/v
ratio. Given the same n/v, the rate 1/2 and rate 3/4
inner codes lead to almost indistinguishable character-
istics, as far as the 0.9 RIRO’ 0.5 RIRO’ and 0.1 RIRO
points are concerned. One concludes that the 3/4 rate
inner code is preferrable, since it offers more through-
put for the above threshold operation.

It is seen from figures 32 and 33 that the Eb/N0
threshold occurs somewhere between 5 and 7 dB. More
precise numbers can be pinned down with the help of
methods and parameters presented earlier, but one wonders
about the relative errors inherent in such estimates and
the confidence levels they merit. Nevertheless, it is
significant to stress that an operational signal-to-noise

ratio, Eb/N0=6.5 dB, though it might be a ballpark figure,
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is still some 14 dB below the uncoded extrapolated-measured
requirement for the 10-12 error rate level (McManamon et al.,

1974). And, if uncoded operation were to be unsatisfactory

due to. irreducible error rate effects (see also earlier ,
sec. 3.6), then error control coding would indeed become
indispensable.

A brief final comment concerning figure 33 and the
slight advantage of the rate 3/4 inner code. Perhaps,
further increase of RI could yield even better results.
Taken to the ultimate limit, RI+1, can one then discard
the inner coder and the entire concatenated hybrid scheme?

A simple check with figure 14, however, tells a different
story. To operate at the required Pe level, the ARQ outer
code by itself (i.e., without the inner code) would require
Eb/N0 somewhere between 10 and 12 dB to stay above the
threshold. Thus, a good inner FEC code is needed to provide
reliable transmissions down to Eb/NOEG dB. As mentioned
earlier, this figure includes the 1-3 dB code rate loss,
but fails to reflect the 33 percent to 100 percent band-

width expansion (or transmission rate reduction).

6. CONCLUSIONS

Many coding alternatives have been considered here.
The less suited ones were dismissed with little comment,
the better ones were scrutinized in more detail. An
alleged "first choice" error control code was selected.
It turned out to be a hybrid of forward error correction
(FEC) and automatic repeat request (ARQ), implemented by v
concatenation of two codes: an inner convolutional code
with Viterbi decoding and an outer error detecting block

code. To be certain that our chosen code is as good as it
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appears, we have delved quite intensely in all its technical
aspects. Features such as implementation, operational
principles, present day state-of-the-art, costs, complexities,
robustness, versatility, and the expected performance on
realistic channels have been compiled, reviewed, and in
some cases computed anew.

The main advantage of the selected codec is to ensure,
with high confidence, practically error free operation.
It can do so at its nominal throughput rate, as long as the
normalized signal-to-noise ratio, Eb/N0 (dB) , exceeds
roughly 6 dB. If, due to a sudden fade, the signal-to-
noise ratio falls below the threshold, the codec will
effectively interrupt the data flow and stop delivery of
erroneous digits.

The main disadvantage of the scheme is the need to
transmit and process redundant bits. If the modems and
the link bandwidths are fixed, the only way to accommodate
additional bits is to reduce the information throughput.
To maintain constant information throughput, on the other
hand, requires bandwidth expansion. The additional occupied
bandwidth is given by (1-R)/R, where R is the overall
throughput rate. Thus, a 33 percent expansion appears
necessary for R=3/4 and the system given. The second dis-
advantage of introducing codecs is the burden of the
devices themselves. Fortunately, the coding scheme
selected can be simply implemented. Whether viewed in
hardware or software sense, the added system is of the same
complexity as a mini-computer.

A final unresolved item concerns the random queues
and delays caused by the ARQ on the long-delay satellite
links. The strategy and proper handling of these possibly

large queues is a complex, interrelated process involving
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some balance between data processing and communications.

System studies of these queues, particularly for network
applications, will require computer simulation because of

the analytical complexities discussed in this report.
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STUDY OF ERROR CONTROL CODING FOR THE U.S. POSTAL SERVICE
ELECTRONIC MESSAGF SYSTEM

Martin Nesenbergs*

ABSTRACT

A U.S. Postal Service (USPS) electronic message system
could incorporate many types of error control coding,
or no coding at all. This report reviews a variety

- of possible codes, lists their advantages and
disadvantages, and selects a preferred alternative.
It turns out to be a concatenation of an inner
convolutional (rate 1/2 to rate 3/4) code with
Viterbi decoding, and an outer long block, high
efficiency code. The two codes have separate
functions, in the sense that the inner code
performs forward error correction and the outer
code does error detection only. The report
describes the structures, properties, and
implementations of the coding hybrid. After
that, the performance of the preferred coding
scheme is estimated. The resultant error
probability gains, which are shown to be con-
siderable, are balanced against system slowdown
and bandwidth expansion.

Key words: ARQ, coding gains, concatenated codes,
error probability, FEC, hybrid
operation, modem losses, throughput,
Viterbi decoding

1. INTRODUCTION
Digital communication via satellite has been
considered for the USPS electronic message system.
Extensive background studies (McManamon et al., 1974) have

been directed at the large scale system features, such as

*The author is with the Institute for Telecommunication
Sciences, Office of Telecommunications, U.S. Department
of Commerce, Boulder, Colorado 80302



useful frequency ranges, present and future traffic loads,
network configurations, transmission impediments, and state
of the art engineering tradeoffs. System design, operation,
and performance verification have to wait until basic feasi-
bility questions are answered in the affirmative. One such
question concerns the quality of the received output data.
Under the heading "System Performance", this multi-faceted

issue was raised in section 7, volume II of McManamon et
al. (1974).

The expected data rates, bandwidths, signal powers,
and the noise densities described above revealed that
perhaps the hardest performance criterion to be satisfied
is the bit error rate, also called error probability. A
target value of 10_12 was given for this error rate, but
at the time of the above report, it was not entirely clear
if or how this could be met. Section 7.8, volume II of
McManamon et al. (1974) suggested error control codes as
a possible alternative to ensure sufficiently low error
rates. Unfortunately, being quite brief and introductory
in nature, the above treatment raised more questions about
coding than it managed to answer. It also overlooked some
important and useful coding techniques.

Hence, the purpose of this study - a second look at
the error control codes as they could be applied today to
a high rate satellite data network. The approach taken
is (a) to consider all promising alternatives, (b) to
identify the most promising alternative as the "first
choice", (c) to verify that the first choice can be
practically implemented and operated, and (d) to estimate
the performance, i.e., gains and losses, of the proposed

scheme.




Before proceeding with the coding tasks, we must
emphasize a few key points. The data network is assumed
to consist of two-way links over which forward and feedback
messages can be sent, if needed. The data terminals are
of sufficient size to justify the initial cost and mainte-
nance of the codecs (short for encoder-decoder). The imple-
mentation of the coding part of the terminal will be shown
as relatively modest, of complexity somewhere between a
minicomputer and a microprocessor. Of course, the device
can always be incorporated in a large general purpose
computer (if such is available), or it can be constructed
as a special unit. Finally, the codecs are stipulated to

function perfectly, so as not to introduce additional errors
in the received messages.

2. OVERALL CODEC ALTERNATIVES

2.1. Candidate Codes

The question of whether to use any error control coding
at all cannot be answered without examination of the more
promising codec alternatives. This section compares the
relative advantages and disadvantages of the best presently
known coding schemes, and then ventures to select a "first
choice" overall error control system for a U.S. Postal
Service network. Perhaps even the best choice is not
good enough. Accordingly, later sections will scrutinize
the details of the candidate codecs, with emphasis on
implementation, operation, performance, and anticipation of
sundry difficulties.

The presence of one-way, two-way, and more elaborate
data channel arrangements within the satellite network



permits forward-acting error correction (FEC), automatic
error detection and repeat requests (ARQ), and any hybrid
combination of the two. Furthermore, most channel arrange-
ments can function well with a variety of known codec types
(Gallager, 1968; Massey, 1973; Wolf, 1973; Sastry, 1974).
The assortment of codes can be divided into three broad
classes: the block codes (Berlekamp, 1968; Peterson and
Weldon, 1972), the convolutional or tree codes (Wozencraft,
1957; Viterbi, 1971), and all the other codes. Among the
others, it is befitting to single out concatenated codes
(Forney, 1966; Zeoli, 1971; Hoffman and Odenwalder, 1972),
which are constructed interactively from two or more codes.
A previous investigation (McManamon et al., 1974)
indicated that a hybrid, FEC and ARQ, with joint
correction and detection roles, may be preferable over
other overall coding schemes for reasons of flexibility
and error correcting performance. Basically, a hybrid
arrangement can do nearly everything that the pure FEC
and ARQ options can do. When transmission conditions are
good and channel errors occur seldom, the hybrid resembles
FEC in throughput rate and error probability performance.
When the channel deteriorates and more errors confront
the decoder, the hybrid can be relied on to reject error
infested data portions. The hybrid then turns to ARQ
action and asks for repetition. No matter how low the
signal-to-noise ratio, or whatever the channel malfunction,
the output error probability can be kept at or below a
level determined by the code. The principles, implementation,
and estimated performance of ARQs appears the same for
high and low speed data links. The low speed cases have

been extensively reviewed by van Duuren (1961), Nesenbergs

(1963), Townsend and Watts (1964), Benice and Frey (1964),




and Burton (1970). From now on we will assume that some
hybrid scheme is the most suitable for the high speed
digital message network.

Our next task is to compare the alternative imple-
mentations of the hybrid scheme. Here we have a number
of options, including the previously mentioned block code
with correction threshold (McManamon et al., 1974).
Besides that, there are quite a few others. A selected
list is tabulated in table 1. The table applies to
code rates in the 0.50 to 0.75 range, assuming negligible
ARQ slowdowns. The left hand column of table 1 lists
six alternatives for the hybrid codec. The other five
columns summarize the key codec characteristics in an
informative way. The final, i.e., the rightmost, column
attempts to rate the hybrid schemes in order of their
suitability for the system. Actually, only the first
three most promising schemes are seriously contemplated;
the others are dismissed as being not suited.

The three leading candidates are:

(1) Concatenated inner convolutional code and an

outer block code.

(2) Concatenated inner convolutional code with an

outer convolutional code.

(3) Convolutional code with computation threshold.

2.2. The Second and Third Finalists
Since considerable subsequent discussion will deal
with alternative (1), the intent here is to comment briefly
on choices (2) and (3). The second finalist (2) differs
from (1) only in the non-block nature of the outer code.
This is not a serious drawback, as the error detecting

power of the outer code is seemingly not lessened. The



Table 1. Comparison of Hybrid, FEC and ARQ, overall coding
alternatives. Code rates are assumed in the
0.50-0.75 range.

CHARACTERISTIC g
) Error Experi-
Codec Rate mental Logic Speed Cost and Relative E
Type Performance| Evidence | Data Speed Complexity | Others Rating j
Needs |

Block code inter- |

with correc- leaving ‘

tion/detection None Very for deep| Not
threshold Poor known 10 high fades suited

Convolutional

code with ARQ

computation IReasonable None sync

threshold to good known 3 Medium problem 3

Concatenated

code of inner Inter-

block and leaving

outer block Poor to may Not

codes mediocre Some 10 High help suited

Concatenated

code of inner

convolutional

and outer Nearly Well

block codes optimal tested 1-3 Low 1

Concatenated

code of inner

block and

outer convo- ARQ

lutional None sync Not

codes Unknown known 10 High problem suited

Concatenated

code of inner

convolutional

and outer ARQ

convolutional Perhaps None sync

codes good known 1~3 Reasonable | problem 2




only problem concerns frame timing of repeat segments in
the ARQ operation. The encoded sequence keeps continu-
ously evolving without any punctuation marks. Some
reference points, called commas, would have to be implanted
for identification of repeat segments. Both transmitter
and receiver must have exact knowledge where the repeats
start and end, and which are multiple repeats. Otherwise,
the inner code of (2) can be the same as in (1).

The third finalist (3) is a non-concatenated convolu-
tional code with a modified decoding algorithm. Consider
an early form of a sequential decoder (Wozencraft, 1957;
Wozencraft and Reiffen, 1961; Fano, 1963; Savage, 1966;
Jacobs, 1967; Gallager, 1968; Forney and Langelier, 1969).
This device seems to be quite capable of forward acting
error correction, as long as the error rate is sufficiently
low. As the error rate increases, however, the computational
job of the sequential decoder grows. By necessity, every
decoder can handle a certain computation rate and not more.
When the noisy input data warrants computation in excess of
the computational ceiling, input data would be lost if not
for buffer storage. Unfortunately, a buffer of finite size
carries a certain probability of overflow and associated
implications of output errors or data loss. Both theory and
practice have shown that the buffer overflow is of primary
concern in the design and operation of sequential decoders.

In scheme (3) one proposes to do the following. Permit
a small buffer storage only. When the computation load
grows and indicates impending overflow, let the ARQ operation
take over. Clearly, this strategy can be used with different
types of decoders, including simplified versions of the
sequential machine itself. Since sequential decoding of

convolutional codes is a powerful (if not cheap) error




control tool, one expects that scheme (3) can be engineered
to perform well. The only nagging doubts concern the
previously mentioned ARQ frame timing and identification
for convolutional coding, and the lack of experimental
evidence for this particular hybrid technique.

3. INNER CODE FOR THE CONCATENATED HYBRID

3.1. Convolutional Codes

In this section we start a detailed scrutiny of the
preferred alternative for the concatenated hybrid FEC and
ARQ scheme, that is, the first choice of table 1.
Specifically, we are concerned with the inner code in the
concatenated arrangement shown in figure 1.

A forward error correcting convolutional code seems
to be the best choice here. 1In fact, the FEC convolutional
coding systems that have been built, simulated, and/or tested
show an abundance of advantages over comparable rate block
codes (Kohlenberg and Forney, 1968; Heller, 1968, 1969;
Forney, 1970; Clark, 1971; Massey and Costello, 1971;
Viterbi, 1971; Cain, 1972; Cahn et al., 1973; Jacobs, 1974).
The crucial points can be summarized as follows:

(a) Convolutional coders are state-of-the-art now.
Systems have been built and tested in sufficient
numbers to feel quite confident about these
devices. One manufacturer has a number of ready
made versions on the market. While other type
FEC coders appear to require further research

and development, good convolutional coders are
already here.
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Figure 1. Hybrid FEC and ARQ scheme with concatenated coding.




(b) Convolutional coders offer relatively simple
and economical error control means.

(c) The performance of convolutional coders is as

| good or better than any other FEC system. We
will return to the performance specifics later,
when alternative decoders will be reviewed.

' (d) The technical features of convolutional codecs
are flexible. This is important for a large
system where input-output requirements, cause-
and-effect relations, and the consequences of
even isolated design decisions are hard to
predict. Some of the easily changed para-
meters or flexible factors offered by con-
volutional coding are: the code rate RI’

the constraint length K of the code, the
systematic or nonsystematic code structure,
the hard or soft (i.e., the number of
quantization levels) operation at the
demodulator output, synchronization cap-
abilities of some decoders, and so forth.
As shown in figure 1, the convolutional inner codec
consists of two parts. At the transmitter, an encoder

is used to pass data from the outer encoder to the satellite

channel modulator. At the receiver, a decoder processes

the demodulator output before passing it to the outer

decoder. Through their combined function, the inner

encoder-decoder pair execute the convolutional coder
operation. Typical, perhaps familiar, encoders are

shown in figures 2 and 3.

Figure 2 illustrates a rate R_=2/3 code, because three

I
output bits correspond to every two input bits. The two
input information bits appear as part of the output,

while a third bit checks the parity over selected past

10
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Figure 2. Convolutional encoder of rate 2/3, constraint length 48,
with 10 delay taps for each parity check.
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information bits. As shown, the parity check includes
exactly ten previous bits extending as far back as 48
information bits, or 72 total bits. The former is the
number of memory cells in the delay shift register shown in
figure 2, and is known as the (encoding) constraint length K
of the code. The code is said to be systematic, because
unperturbed input bits can be found at prescribed places in
the output sequence.

3.2. Systematic and Nonsystematic Aspects

The definition of a systematic convolutional code is
further elaborated in figure 3. Both parts (A) and (B)
show rate RI=1/2 and constraint length K=4 convolutional
encoders. Encoder (A) contains the original information
bits among its outputs; it is systematic. Encoder (B) is
nonsystematic, even though a mod-2 gate of outputs, XkeYk'
produces a delayed replica of the input sequence. The
reason for concern with these matters is to find the most
powerful convolutional codes, and not waste time on the
bad ones. It has been established (Bussgang, 1965; Lin
and Lyne, 1967; Heller, 1969; Massey and Costello, 1971;
Gilhausen et al., 1971, 1972; Forney, 1972, 1973; Massey,
1973; Paaske, 1974) that the performance of the best
nonsystematic convolutional codes is superior.

Since for block codes the two code families are often
indistinguishable, some explanation seems in order. The
performance of a convolutional code over any channel depends
largely upon the relative distances between codewords and,
in particular, upon the so called minimum free distance, d
of the code. This df is defined as the least number of

1's that can occur over all non-trivial closed paths passing

fl

through the all-zero state in the state diagram of that code




(Viterbi, 1967; Massey and Costello, 1971; Peterson and
Weldon, 1972; Forney, 1973). The state diagram of example
(A), figure 3, is shown in figure 4, and that of (B) in
figure 5. In the case of the systematic code (A), the
passage through states 000, 100, 010, 001, and back to 000,
produces outputs 11, 01, 00, and 0l1l. There are four 1l's
among the outputs, and no other closed non-trivial path
yields less. Hence, the free distance df=4 for the
systematic code (A). Furthermore, it can be shown that no
other systematic code with the same rate and constraint
length can have a larger free distance. 1In figure 5, one
traverses a different path through the states; namely, 000,
100, 110, 011, 001, and 000. The output sequence 11, 00,
01, 01, 11 implies df=6 for this nonsystematic code. It
turns out that df=6 is the best that one can do with
RI=1/2 and K=4.

3.3. Decoder Types
The choice of constraint length K depends on the

decoder type used in practice. There are three prominent
decoding techniques for convolutional codes:

Sequential decoding

Feedback decoding

Viterbi decoding
All three offer their peculiar variations, refinements,
as well as advantages and disadvantages. A summary of
the leading options is given in table 2. As before,
the table is a review of pertinent inner code decoders
and their characteristics. The justification of the
claims is found in appropriate references (which includes
most of the list).
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Table 2. Comparison of Forward Acting Decoders For Convolutional Inner Code
Candidates. Code Rates Are Assumed in the 0.50-0.75 Range

CHARACTERISTIC
Error Experi-
Decoder Rate mental Logic Speed Cost and Relative
Type Performance | Evidence |Data Speed Complexity | Others Rating
Sequential
with Fano Some Extremely
algorithm Great tests 2-4 high 4
Sequential
with stack,
s bucket, and Further
~ other Some Quite progress
variations Great tests 1.5-2 high likely 3
Feedback
(general) Poor 1 Low 5
Feedback
(threshold Very Some Very
or MLD) poor tests 1 low 6
Many

Viterbi with Well good
hard decisions Good tested 2-3 Reasonable | options 2

Nearly Many
Viterbi with optimum Well good
soft decisions and robust tested 2-3 Reasonable | options 1




Sequential decoding evolved from the original work of
Wozencraft (Wozencraft, 1957; Wozencraft and Reiffen, 1961),
to the Fano algorithm (Fano, 1963; Massey and Sain, 1968;
Gallager, 1968), to later stack, bucket, bootstrap, and
other variations (Zigangirov, 1966; Jelinek, 1969; Massey,
1973). All of these techniques can work with long
constraint lengths and so produce powerful error correction
performance. The performance has been verified by tests
and/or simulation (Forney, 1967; Forney and Langelier, 1969;
Lumb, 1969; Cain, 1971; Layland and Lushbaugh, 1971;

Forney and Bower, 1971; Gilhausen et al., 1971; Gilhausen

and Lumb, 1972; Odenwalder et al., 1972; Cahn et al.,

1973; Dodds, 1973). More recent sequential decoding versions
have sought to reduce the computation load, the associated
logic speed and the memory requirements, while maintaining
high level of performance. To a large extent, such
objectives have been met by the Zigangirov (1966) and Jelinek
(1969) stack method, and other recent extensions.
Unfortunately, the complexity of sequential decoders is still
large and burdensome.

A far simpler family of convolutional decoders are the
feedback decoders, and the related threshold or majority
logic decision (MLD) decoders (Massey, 1963; Rudolph, 1967;
Gallager, 1968; Goldman, 1969; Peterson and Weldon, 1972;
Massey, 1973; Wolf, 1973). A general feedback decoder is
illustrated in figure 6. Note the crucial role of the
syndrome register. Through a usually prewired or fixed
read-only storage logic, the syndrome dictates output
correction as well as its own update, called "feedback."

A special case of the feedback decoder is the fixed
threshold count-of-1's MLD decoder. Such an MLD device

is shown in figure 7. This decoder happens to decode the
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rate 2/3 code introduced earlier in figure 2. The two
threshold gates M1 and M2 serve the two parallel information
registers. The function of the two gates is an identical
majority poll of the five inputs shown. Thus, if the
number of input 0's is N(0) and the number of input 1l's
is N(1), then
Gate Output = 0 if N(0) > N(1),
=1 if N(0) < N(1).
A 1 at the gate output inverts the appropriate informa-
tion bit and, by feedback action, deletes either
N(1) - N(0) > 1
or
N(1) - N(O) -1 >0
net 1's from the syndrome register.

The codec consisting of encoder (fig. 2) and decoder
(fig. 7), implements a rate RI=2/3 self-orthogonal code.
Its operation is based on, so called, "disjoint and full"
difference triangles (Massey, 1963; Peterson and Weldon,
1972):

21 19
16 6 11 12
15 R 5 T 4 8
2 17 18 23 3 10 14 22
The free distance of this code df=6 is nearly optimal for such

self-orthogonal codes, and yet only two errors are always cor-
rectable among 72 channel bits (Robinson and Bernstein,

1967). This error correcting scheme is not very powerful
(it further worsens as constraint length increases), but

the codec cost and complexity is extremely low.
3.4. Viterbi Decoding

The preferred alternative in table 2 uses the Viterbi
decoding algorithm (Viterbi, 1967, 1971; Heller, 1968,
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1969; Omura, 1969; 1971; Clark and Davis, 1971; Clark, 1971;
Heller and Jacobs, 1971; Kobayashi, 1971; Viterbi and
Odenwalder, 1972; Batson et al., 1972; Forney, 1972; 1973;

Massey, 1973; Wolf, 1973; Jacobs, 1974). One must distinguish

two cases. The "hard decision" case refers to demodulator
output and decoder input being an ordinary binary decision,
zero or one. The "soft decision" admits more than two
quantized demodulator outputs. A typical case of eight

quantization levels is:

000 --==-=ee-- a sure zero,

001

010

011 ------——- a doubtful zero,
100 -----—ee-o- a doubtful one,
101

110

111 --=-====—- a sure one.

There are Viterbi decoders with an incorporated switch to
either use or omit the less significant quantization digits.
Thus, an operator can choose between the hard and soft
options. Both options have been explored and tested.

While the speed requirements and costs are comparable,

one finds the soft version superior in performance.

Before turning to the performance numbers of the various
alternatives, it may be beneficial to get an elementary grasp
of the operation and implementation of our first choice -
the Viterbi decoding system. A simple illustration can
start with the encoder of figure 3, part (B). Here, the
(encoder) constraint length is K=4, roughly a half of the
K=6 to K=10 values used in actual systems. The rate
RI=1/2 code is nonsystematic, with the state diagram given

in figure 5. Each input bit directs the system from a
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previous state to the next state. If the present state is
110, then input 0 causes a transition to state 011 and input
1 to state 111. The output bits produced by register content
0110 are 01, and so forth. These output bits are shown in
the state diagram (fig. 5) next to the transition arrows
between states.

The trellis diagram is an equivalent, somewhat longer,
and, in a way, a more vivid description of the encoding
process. The corresponding trellis diagram is shown in
figure 8. Note again how a single input bit 0 takes the
encoder from state 110 to state 011 and produces output O0l.
A length L non-zero input sequence gives forth a 2 (L+3)
long output. An example of L=5,

...0110110...
L
yields an output
...00 11 00 01 10 11 01 01 11 o00...
) 2 (L+3) ”
The extension of L to L+3 describes the merge properties

of a non-zero path from the all-zero path in the trellis.
It is also an important delay parameter to be used later
in the decoding process. As explained elsewhere, the
Viterbi algorithm ascertains and, if need be, modifies
the estimated most likely path through the trellis. With
a diminishing probability, some path updates can take place
after considerable delay. 1In communication application,
outputs cannot be delayed arbitrarily long, but must be
delivered after some fixed -- preferably small -- delay.
It turns out that, through a process called merging of
paths, the finite delay parameter L serves to terminate
the decoder path memory, and to deliver the output bits

on schedule. The effect of various L choices has been
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determined by Gilhausen et al. (1971). It is shown that
L;4K, which is a delay four times the constraint length,
for all practical purposes gives as much performance gain
as can be expected of the arbitrarily long memory. In
the previous example of figure 3 (B) and figure 8, the
L=5 value is thus too short for best results, and entails
at least a 1 dB signal-to-noise ratio loss. A higher para-
meter value, such as L>16, should be used to avoid the loss.

The decoder selects the most likely path by contin-
uously keeping track of appropriate path likelihood
measures, commonly called metrics. The multitude of paths
are all constituted of branches, that is, directed links
between successive states. When a set of branches combine
to form a path, the branch metrics add to form the (total)
path metric of that path. As an illustration, consider
the hard decision example of figure 8. The bookkeeping of
branch and path metrics is shown in figure 9. If the
original input data sequence is

00111000,
the encoded and transmitted sequence is
00 00 11 00 10 10 01 11.

For a moment, assume no errors in transmission, so that
the received sequence agrees with the transmitted one.

A metric that is defined to count disagreements will assign to

the all 0's path a sequence of branch metric/path metric
pairs

o/0 0/0 2/2 0/2 1/3 1/4 1/5 2/7,
with a final path metric 7. Likewise, the all (L=5) l's
path would be encoded as

11 00 10 01 01 10 01 11,

and the metric pairs would evolve as

2/2 0/2 1/3 1/4 2/6 0/6 0/6 0/6,
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causing the final metric 6. In fact, all conceivable paths
will have nonzero metrics, except for the correct path,
where only 0/0 metric pairs arise. Note, that the 3-bit
suffix does not carry information. Its sole purpose is to
merge the paths of the trellis.

Next, permit three errors to infest the same trans-
mitted sequence, as shown by the received sequence

00 Mo 11 fLjo 10 [oo o1 11.

From figure 9, one sees how the branch and path metric
picture changes. While the all 0's path shows a total
metric 8, the best final-zero path now has a metric of 5.
Likewise, the all 1's path, with a total metric 9, is
worse than the best final-one path. The latter has a path
metric of 3, and through back tracing it leads to the actual
correct path. Thus, the correct path is unique, it is
identifiable, and the correct decoding output is delivered.

Of course, there are other error patterns that cannot
be corrected. In figure 10 we show a five error event
that causes erroneous output. An incorrect path with a
total path metric 2 is selected ahead of the correct path,
which turns out to have a path metric 5. As a consequence,
the original data sequence

0110 1000
is incorrectly decoded as
0100 100 0.

This is not too unfortunate, as the five original
channel errors are reduced to a single output error.
For longer delay parameters L and other error events, one
anticipates output errors to occur in bursts with
durations typically of the same order as the constraint
length K of the code.
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3.5. Performance on the Ideal Channel
Simulated ideal channel performance of convolutional
FEC codes is summarized in figure 11. The ordinate is the
output bit-error probability, Prs and the abscissa is the
normalized signal-to-noise ratio, Eb/N0 in decibels.
Quantity Eb is the signal energy per information bit, and
Ny is the one-sided noise spectral density. The curves of
figure 11 depict the binary (i,e., M=2) coherent PSK channel
in the presence of white Gaussian noise. As discussed
before (McManamon et al., 1974), the main features and
results readily generalize to the other MPSK modems, as
well as other channel models.
The four vertical lines in figure 11 are designated
as channel capacity limits. For instance, with no
restriction on signal shape or duration, Shannon's
ultimate theorem for error-free reception
R. = W log (1 + 3
1 2 N
may be contemplated. If one divides by rate R and lets
bandwidth W assume larger and larger values, then
RIEb g; ———a-EE .
fn 2 = 4n (1+WN ) W->°°NO
0
If so, the ultimate zero-error operation cannot be

achieved unless Eb/N0 is larger than &n 2, or -1.6 dB.

If one insists on hard decision operation, the capacity
threshold is multiplied by a factor n/2, or 2.0 dB. To
compensate, Eb/N0 must then be above 0.4 dB. Likewise,

if one permits arbitrarily fine soft decisions to accompany
optimal sequential decoding, then Eb/N0=l.4 dB is needed.

And, if one restricts the bandwidth to RIW=1/2 and specifies
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PSK hard decision operation, then more than 3 dB is
sacrificed and the rightmost threshold Eb/N0=4.5 dB is
required.
Without coding, the theoretical modem performance is
a smooth function of Eb/NO. The indicated curve crosses
all the capacity limits and upper-bounds all the observed
data in figure 11. The present observed coding data extends
over the p; range from lO-3 to lO_7 (Forney, 1970; Forney
and Bower, 1971; Gilhousen et al., 1971; Batson et al.,
1972; Odenwalder et al., 1972; Cahn et al., 1973; Jacobs,
1974). Three types of convolutional codecs are indicated.
They are:
Sequential decoding, rate 1/2, and two different
data throughput rates, 1 Mbps and 40 Mbps.
Hard decision.

Feedback decoding with rates 1/2 and 2/3, and
constraint lengths 10 and 8, respectively.
Hard decision.

Viterbi decoding with rates 1/2 and 3/4, and
constraint lengths 7 and 9, respectively.
Hard and soft decision.

In support of earlier table 2, figure 11 shows the
mentioned observed performances. Error correction per se
improves with lower coding rate RI and higher constraint
length K. At pI=lO-7, for example, the rate RI=1/2 feed-
back decoding scheme requires roughly Eb/N0=9 dB. Viterbi
decoding without quantization appears only slightly better,
while hard decision sequential decoding offers a 3 dB
improvement at the pI=lO-7 level. There is some
uncertainty about the actual gain, as the complexity and
speed of logic affects implementation and performance for

sequential machines. Such is the nature of the 1 dB
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advantage seen at the 1 Mbps data rate tests over the
40 Mbps tests.

Fortunately, the performance of Viterbi decoding can
be substantially improved by the previously cited soft
decision operation. 1In figure 11 two such 8-level
quantization curves are shown. They depict code rates
R;=1/2 and R;=3/4. At pI=lO-7, the rate 1/2 code
is comparable to the sequential hard decision case, and
requires a mere Eb/N036 dB to perform that well. While
all this seems remarkably good, one is reminded of the inter-

est in the objective of an overall 10 12

error probability.
The performance extrapolation beyond observed data, toward
lower Pr values, is indicated in figure 11. The asymptotic
pI+0 behavior is derived from the code distance structure,
more specifically from the free distance df introduced
above (Jacobs, 1974). Note, that Eb/N0=7.3 dB seems to
provide pI=lO“12 for soft decision, rate RI=1/2, Viterbi
decoder. This signal-to-noise ratio should be contrasted
with Eb/N0=l4.4 that is required by uncoded ideal theo-
retical operation at the same Pr level, and the considerably
larger extrapolated-measured requirement of 20.5 dB, or

even worse (McManamon et al., 1974).

3.6. Performance on Realistic Channels
Actual channels, even on satellite links, are known

to depart from the ideal white Gaussian noise model. There

are many reasons why modems fall short of optimal performance

and suffer a variety of operational losses. As a conse-
quence, the previous ideal performance estimates must be
modified. We will do so next, with particular attention

to the two RI=1/2 and RI=3/4 Viterbi soft decision decoders
described earlier and highlighted in figure 11. The
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performance at other rates, such as RI=2/3, can be inter-
polated as needed.

The definition of gain and loss terms is given in
figure 12. First, the code redundancy carries a loss, the
so called code rate loss, that equals 3.0 dB for the RI=1/2
code, and 1.2 dB for the RI=3/4 code. This loss is shown
in figure 12 as RI(dB), a constant displacement of the
uncoded modem performance curve for both ideal and realistic
channels. Assume next that error statistics are as simple
as possible, such as for a memoryless binary symmetric
channel, where errors occur with probability Pg- If the
error probability has a given value, pe=pe+, a code with
rate RI may be able to reduce Pe to a new level, pe*, which
could be denoted pI* in deference to the inner coder.

For the ideal channel, such as given in figure 11, the

basic coding gain, Gb(dB), is defined as the net theoretical
saving of signal-to-noise ratio Eb/NO(dB) through the use

of the code. 1In figure 12, the coded modem curve intersects
pe+ at the ideal coded operation point. This Eb/NO value

had better be less than the pe* intersect with the uncoded

curve, for the basic coding gain G, to be positive.

The actual coding gain, Ga(dB?, is defined in a similar
way. Note that the actual modem-channel pair must expend
more signal energy to achieve the same performance, pe+ or
pe*, as the ideal. Furthermore, at specified Pe levels
these degradations can be different. One has different
modem losses at different performance levels. Thus in
figure 12, the modem loss at pe+ is shown to be Lc(dB),
and at pe* it is Lu(dB). Typically, Lu>Lc implies that
realistic coded system requires more Eb/NO than does the
corresponding ideal coded system, but not much more. One

defines, therefore, the actual coding gain as the net
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Eb/N0 (dB) saving under the actual channel conditions.
One sees from figure 12 that

G, = G, + L, - L, (dB)
must hold, and that Ga>Gb is apt to be true. The last
assertion has validity for those real life pevs.Eb/NO plots
that flatten out and display an irreducible error rate.
Then there may exist pe* levels at which the actual coding
gain is infinite.

Recent data on applicable coding gains is summarized
by Jacobs (1974), and the references listed. The gains can
be extended to our ideal and extrapolated-measured curves,
under all the specified conditions. For both M=2 and M=4
coherent PSK, rate R =1/2, constraint length K=7, eight
level soft decision, a Viterbi decoder should perform as
indicated in figure 13. In the center of the figure, a
7 level is identified. At that level,

L. = 3.5 dB,

desired pe*=10_

u ~

L, = 1.8 dB,
G, £ 7.5 dB,
G, = 5.8 dB.

The actual coding gains have been computed for various
desired pe* levels. The results are given in figures 14

and 15 for the same two Viterbi arrangements cited earlier.
Note the more or less invariant 1 dB Eb/N0 difference between
the rate 1/2 and rate 3/4 codes. If the uncoded extrapolated-
measured data calls for 20.5 dB signal-to-noise ratio at

the 10_12 level, then the present FEC scheme seems capable

of the same reliability at 10.3 dB and 11.3 dB, for the

two rates considered. This actual coding gain of 9 to

10 dB appears considerable, yet it is not the end of the
story. More decibels can be conserved by the outer code,
which is the topic of the next section.
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Figure 15 also emphasizes that coding can be effective
to reduce so called irreducible error rate levels. The
effect is demonstrated by the horizontal lines to the right
in figure 15. 1If, for example, the extrapolated-
measured curve bottoms out at pI=lO-3 due to whatever
malfunction, the output error probability after decoding
will be roughly 1078 and 10”7 for the codes with rates 1/2
and 3/4, respectively. An irreducible level at 10-4 can
be brought down to 10713 ana 1071, A1l irreducible levels
lower than 5(10”°) can satisfy the 10712 objective by the
FEC action alone. The fact that the outer ARQ coding can

help even more will be described next.

4. OUTER CODE FOR THE CONCATENATED HYBRID

4.1. Codec

The selection of a hybrid FEC and ARQ scheme was
discussed in section 2. Moreover, table 1 and pertaining
arguments led to the announcement that a concatenation of
an inner convolutional code with an outer block code has
the most promise of all the alternatives considered. The
overall system was briefly sketched in figure 1, identifying
the outer code with the ARQ function. That outer code will
be the topic of this section. Matters such as the encoder,
the decoder, and the role and the performance of the error
detecting outer code will be elaborated.

To begin, the outer code selection is relatively straight
forward. Whatever the length, n, of the block code, one uses
an almost negligible number of parity check bits for error
detection. The abbreviation (n,k) is used for such a block

code, where k is the number of information bits and n-k the




number of check bits. It seems' reasonable to start with
block length n somewhere between 10,000 and 1,000,000.
Redundancy of 1 percent [i.e., the ratio (n-k)/n expressed
in percent] then provides 100 to 10,000 check bits. As will
be shown later, this number of parity checks may be super-
fluous and a much smaller percent redundancy may suffice.
Conclusion: the redundancy loss for the outer code of rate
R, is negligible, Roél.

Past experience with ARQ systems (van Duuren, 1961;
Nesenbergs, 1963; Townsend and Watts, 1964; Bernice and
Frey, 1964; Burton, 1970) has shown that the block length
n affects primarily the throughput rate R. Roughly,
throughput vanishes in an ARQ system whenever the input

error probability exceeds 1/n. Hence, n larger than 106

appears undesirable. Similarly, the number of check bits
n-k determines the likelihood of the n-bit word containing
undetected errors.

The outer encoder need not be more involved than a
standard linear feedback shift-register (Gallager, 1968;
Peterson and Weldon, 1972). The specific array of feed-
back taps can be chosen to guarantee as high a minimum
distance as is possible for BCH or other known block codes.
An encoder so derived is shown in figure 16. Used with
k information bits, k not exceeding 32,737, the n-k=30
added parity bits ensure that all four or less inner
decoder output errors are detected. When the number of
errors is five or more, the probability of detecting the
errors is still exceedingly high.

The outer decoder, fiqure 17, is almost a duplicate
of the outer encoder. The device simply verifies whether
all n-k parity checks are satisfied by the received code word.

If not, the repeat, of the word must be requested from the
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transmitter, and the present word output must be disabled.
This process is known as the ARQ action. If all parity
checks are satisfied, there is no need for ARQ action.
Figure 17 also permits a secondary disable order to be
used by the receiver terminal for unspecified reasons.

To select the block (n,k) code and the appropriate
codecs, a convenient shorthand for the feedback taps
should be used. Thus, the nine taps in figures 16 and
17 can be represented in binary as

101 001 100 011 000 000 001 000 010 000 Ly
or in octal as 5,1,4,... or by a conventional numerical
listing of the locations of the taps:

0,2,5,6,10,11,20,25,30.
Whereas the coding literature seems to prefer the binary
and octal representations, we shall employ the numerical
location list. As seen from figures 16 and 17, such a
location list consists of all registers with exterior
connections. It is also evident that the first (entry 0)
and the last (entry n-k) taps must be always present.
Hence, one needs only the list of the interior taps, that
is, those taps that involve exclusive -OR gates. 1In
figures 16 and 17 there are seven such interior taps, namely

2,5,6,10,11,20, and 25.

There are still nearly 2n-k-1 different codecs possible

via specifications of the shift-register taps. In table 3
we present a short selection of codes that happen to belong
to the BCH category (Berlekamp, 1968; Peterson and Weldon,
1972). Note that the block length n can be increased
relatively rapidly, compared to the modest number of
registers, n-k. The number of inner taps seems to grow

more or less proportionally to the length of the shift-
register.
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Table 3. Possible Error Detecting Codes for ARQ

Upper Number of Number of Numerical listing
bound on registers, inner taps of all the inner
block length same as to exclusive taps, same as ex-
n n-k -OR gates clusive -OR gates
4 095 12 3 1,4,6
4 095 24 13 2,3,4,7 8,9,10,11 12,14,15,16,22
8 191 13 3 1,3,4
8 191 26 11 1,3,6,8 10,12,16,18 20,22,23
16 383 14 3 1,6,10
16 383 28 11 3,5,6,9 10,14,15,18 19,22,24
= *32 767 30 7 2,5,6,10 11,20,25
32 767 60 33 4,6,7,8 12,13,15,16 17,18,19,21
22,24,25,28 29,31,35,36 37,39,40,42
43,45,46,47 50,54,56,57 58
65 535 32 15 1,2,3,6 7,8,10,13 16,17,18,21
23,25,27
65 535 64 28 2,10,15,18 19,20,23,26 28,31,33,35
36,37,40,41 42,44,45,46 47,49,52,53
55,59,60,62
131 071 51 21 1,2,3,4 5,7,8,9 12,13,14,17
22,26,27,34 35,36,37,38 42
*The encoder of this code is shown in figure 16, the decoder in figure 17.




4.2. ARQ Performance

The performance of the outer ARQ codec invoives at
least three criteria:

(i) the throughput rate R, a quantity that is
' related but not identical to the code rate RO;
(149 the output word error probability Po;

(iii) the statistics of delays and random queues
' caused by the ARQ action, and the associated
storage overflow implications.
In this section we will concentrate on the first two
entities, R and PO, for a complete ARQ duplex arrangement,
as outlined in figure 18.

Each terminal is both a transmitter and a receiver. It
transmits forward data and ARQ acknowledgements for the
return link. It receives return link data and the ARQ
control bits concerning previous forward transmissions.
The transmitter handles incoming information, also called
"Data In," in groupings or words denoted Wl, W2,.... While
Wl is enroute, the path delay is such that w2""’WD have
also departed from the transmitter. Quantity D thus
measures the two-way delay in units of data words. Before
transmission, each word Wi is stored for eventual future
repetition, if requested by ARQ. The word wi is also
joined by two short system control statements Aj and Qk'
Statement Aj is the ARQ acknowledgement for some word,

Wj’ received over the return channel. The functional role
of Aj is straight forward:

A.
J

0 means OK, or no errors detected;

1 means NOK, or some errors detected.
Thus, a single information bit suffices for A..

The function of Qk is to qualify the accompanying

word Wk. Perhaps it's a new word, or some previous
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word Wi that is being repeated. The nature of the repeat,
such as due to Ak being NOK, or Ak being erased (lost),
or some system outage, may be important. Loosely speaking,
Qk is an indicator for the ARQ loop's present state. The
following short table outlines a possible four state scheme
for the ARQ duplex of figure 18:
A Q0 (OK)»Clear Wl’ Store WD+1’ Send C(A,Q0,wW

Q1 (NOK)-*Keep Wl, Send C(A,Ql,wl)

= QE (Erasure)-*Keep Wl, Send C(A,QE,Wl)

= QS (System)-—+Keep Wl, Send C(A,QS,Wl)
Here, two bits suffice to characterize Q. After

D+l)

assembling, the three parts, Ai’ Qj' and Wk’

together and become C(Ai,Qj,wk), or C(A,Q,W) for short.
Because their bit count is so small compared to W, the

are encoded

segments A and Q can be safely ignored in data rate
calculation.

The key to performance (i) and (ii) calculation is
given by the rules of the ARQ. A synoptic start is offered
in figure 19. There are three diagnoses possible on both
the forward and feedback paths. A word can emerge from
the inner decoder either correct, with errors that are
detected, or with undetected errors. The same things happen
to the ARQ acknowledgement, except that an incorrect A is
said to be transposed, and a doubtful A is said to be
erased.

The ARQ control logic contained in the duplex loop
(fig. 18) determines the consequences for all nine alter-
natives shown in figure 19. Without going into too much
detail, such a diagram can still be helpful. It assists
to compute, to upper bound, or to lower bound performance

indicators, such as R and PO. In what follows, we shall
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be content to estimate some very primitive bounds on
the two quantities.

Let pn(j) be the probability of j errors in the n bit
word, where n is a large integer and 0<j<n. This probability
is observed in the data stream, where it emerges from the
inner decoder and enters the outer decoder. We assume that
the same pn(j) holds for the forward and feedback paths,
but that the two links are otherwise statistically indepen-
dent. It follows that the throughput rate R must be
bounded by

X 2(0) < g—I < £p_(0).
This allegation is verified by turning to figure 20 and
considering the least possible repeats, as well as the
most possible, in the ARQ synopsis (fig. 19).

For example, the left side of this inequality follows
from

R > RiRy Pr{w
where R0=k/n and

accepted in the most repeat case},

'—l

Pr{...} = Pr (A, correct) Pr (W, correct)
+ Pr(A1 correct) Pr(Wl undet. error).
When acknowledgement Al is shorter than word Wl,
Pr (A, correct) > Pr (W, correct) = p, (0) ,

k 2
n

and pn (0).

= 2
I
Likewise, the right side follows from
R < RIRO Pr{wl accepted in the least repeat casel,
where now
Pri{...} = Pr (W, correct) + negligible terms.
The ARQ word-error probability behavior is somewhat

different, and calls for a different characterization (see
fig. 21):
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P. > Pr (accepted W, has some error in the least error case)

1
Pr(wl undet. error)

v

Pr(Wl correct) + Pr(Wl undet. error)

v

Pr(Wl undet. error)
P, < Pr (accepted Wl has some error in the most error case)
5-Pr(Wl undet. error) + Pr(Al transposed).

Since acknowledgement Al is an extremely short segment (such
as one or two bits) of an n-bit word, one expects
| Pr(Al transposed) << Pr(wl undet. error).

One can show, for example, that

Pr(Al transposed)

= (constant) d .
PrYWl undet. error) n

Here, 4 stands for the minimum distance of the code. A
BCH code with n=2"-1 and n-k=mt has d>2t+l, as is well
known (Berlekamp, 1968; Gallager, 1968; Peterson and
Weldon, 1972). Thus, d<<n even for the best codes, and
especially for n>>1. One concludes that the upper and
lower bounds are indistinguishable (Nesenbergs, 1963;
Lucky et al., 1968):

P

e

0 Pr(wl undet. error)

X n
2-(1'1- ) Z pn(J).
j=a

The bounds on the throughput rate R and the outer coder

Il

word-error probability P0 have been computed for two
channel models. The first model, denoted as MOD I, is
the memoryless binary symmetric channel with probability

Py For MOD 1I:

. _ (n\.3J _ n-j :
p,(3) = (j)pI(l Py) 7, 0 <3 <nm.
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The computation of sums of such binomial terms is an old
problem, known to be difficult for large n and small Py
which is exactly our case. An approximation far better
than the Chernoff bound or the direct Gaussian approxi-

mation is given by the asymptotic expression (Gallager,
1968),

fo]

d
np
I n-d+1
(T) i

v2md (1 - g)n T %( - EEE) ’

Il o~

n\ j - =7 =
d

whenever an<d. If anzd, one can conveniently upper bound
the sum by unity.

The second channel model, denoted as MOD IT, postulates
error bits to be effectively bunched in solid bursts of

length v. It follows from a Poisson approximation that

for MQD II:
np
e (- 52).

an/(an + v),

e

pn(O)

I

rf
p._(3)
j=a

where again an<d. To carry out the computation, we have
used three values v=5, 15, and 45.

The computed results are given in a host of figures,
starting with figure 22. The first three figures, 22 through
24, depict the ARQ throughput rate R/RI as a function of the
inner codec error probability Prv all for block length
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n=10,000. The figures differ in k value: Figure 22 has
k=9,900, figure 23 has k=9,950, and figure 24 has k=9,990.
Each figure has eight curves. The leftmost two curves
belong . to MOD I, while the other six curves belong to
MOD II. Furthermore, each adjacent pair of curves, as
for MOD I, represent the lower and upper bounds on the
outer code throughput rate R/RI. The three lower and upper
bound pairs for MOD II are descriptive of solid burst lengths
v=5, 15, and 45, respectively.
One notes the following features:
(1) The effect of k is a very minor change in the
vertical scale of the curves. Since this
effect is entirely predictable, one can omit
k dependence in other similar plots.
Accordingly, figures 25 to 28 are all for
k/n=0.99, but with different n values.
(2) The upper and lower bounds for the same
channel model are separated very nearly by
a factor of 2 in the horizontal, Prs dependence.
(3) One can view MOD I as a special v=1 case of
MOD II. The effect of different Vi and Vs,
values then seems to correspond to a horizontal
Pr shift by a factor vl/vz. Figure 25, for
example, has a throughput upper bound R/RI=0'5
for MOE I at pIEZ(IO—S),-ior MOD II, v=5, at
, v=15 at pI§3(lO ), and so forth. An
increase in error bursting, v, benefits the

pIEIO-

throughput rate. Unfortunately, realistic
channels, including inner Viterbi decoders, are

not sufficiently well understood to state what

v value is applicable. One can speculate
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that for nonsystematic convolutional codes,
with constraint length K=8 and delay
parameter L=40, a good guess could be v=5. But,
without further evidence the entire matter is too
vague to tell.

(4) As another rough rule of thumb one can note:

b = _.\)
R/RI = 0.9 at Pr = 55 -
~ ~ V
= 0.6 at - —2n ’
= 0.3 at =Y
n
= 0.1 at = 2V s
n

Thus, most of the throughput decline takes place
near pI=v/n. The p; range, within which R/RI drops
from 0.9 to 0.1, is given by

pI(R/RI = 0.1)

_ = 20 ,
P, (R/R, = 0.9)

a quantity that seems surprisingly independent
of the channel burst parameter v.

The second performance criterion, the outer code word
error probability PO' is graphed in figures 29 to 31. It
appears that P0 has some dependence on channel models,
such as MOD I or MOD II, with an increase in v usually
implying a relatively small P0 improvement. Moreover,
since the outer decoder monitors the concatenated coding
output, the overall output word error probability is simply
P=P0, for the n-bit word. The output bit error probability,
P, is related to P0 also, but not in a known simple way.

The obvious bounds,
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nto S P S Py
can be sharpened (Viterbi, 1966) under some specific and
elaborate circumstances. Unfortunately, all such refine-

ments remain relatively ineffective compared to the gross
2—(n—k) bound on PO. To assure that P and P never exceed
-12

10 r it suffices to set

n-k > —12_ = 49

- log2
This is done in figure 31, where

n-k=50 yields an effective
error detecting scheme with an almost insignificant 0.5

percent redundancy for block length n=10,000.

The third performance criterion (iii) dealing with
random ARQ delays and queues will not be commented on,
because of insufficient understanding on our part. The

matter seems important and, if time permits, should be

studied in the future. The large path delay on satellite

links compounds the ARQ processing difficulty (Balcovic and
Muench, 1969; McGruther, 1972; Abramson and Kuo, 1973;

Lucky, 1974; Sastry, 1974) and, by all indications, calls
for innovative ARQ designs.

5. OVERALL PERFORMANCE

The concatenated hybrid, FEC and ARQ, coding has an
overall performance yet to be described. The advantages
and disadvantages are both consequences of inner and outer
coder features. For instance, the rate slowdown or band-
width expansion is a drawback caused by both coders, though
in different ways. Another disadvantage is the implementa-
tion, maintenance, and other complexity related costs.

The advantages boil down to one: more reliable data output.
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This error rate reduction, of course, is also a resultant
of the workings of both codes. Previously, we have
described the two codecs separately; now we shall combine
them and summarize the overall performance.

First, consider the overall output error probability.
As pointed out in the ARQ performance discussion (sec. 4.2),
this performance criterion is for all practical purposes
the same PO as observed at the ARQ output. It was shown
that a modest investment in n-k>40 parity check bits for
the outer code implies overall word and bit probabilities,
P and p, at or below 10-12. Other parameters and system
arrangements may reduce the error rate further, but not
substantially. One concludes that a block code with
n>10,000 and not less than 40 parity checks (which amounts
to 0.4 percent redundancy) will provide error control to
keep the output binary error probability at the desired
level.

Our next concern is the overall throughput rate of

the hybrid scheme. The work on inner and outer coders implies

that the overall rate R cannot exceed the product of the

two constituent rates RI and RO. If there are no ARQ
repeats, then R=RIR0. In the presence of repeats, R<RIR0.
The inner rate RI was assumed to be 1/2, or 3/4, or perhaps
2/3. The outer rate R0 is further reduced by ARQ. Since
the effects are complicated, exact calculation was abandoned
in favor of simpler bounds. Such upper and lower bounds

on the relative rate R/RI were presented in figures 22 to
28. The abscissa for these plots was the binary error prob-

ability, pI, at the Viterbi decoder output. The pI itself

was shown to be a function of channel signal-to-noise ratio,

Eb/NO(dB), in figures 13 to 15, and subject to many

assumptions. A merger of these two families of curves
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produces the sought overall throughput rate, R, versus the
signal-to-noise ratio, all capable of meeting the 10 12
binary error rate objective. Four such relationships are
plotted in figure 32. While many more such curves are

possible, the given four appear rather typical. Note

the pronounced Eb/N0 threshold effect. Above the threshold,

data passes with negligible or no slowdown. Near the
threshold, repeats and non-repeats occur with comparable
frequency. Further below the threshold, the throughput
R ceases and the link gets turned off by the ARQ.

Since different conditions and parameter choices give
cause for distinct curves in figure 32, it seems useful to
graphically lump together and characterize the various
threshold curves. Such an attempt has led to figure 33
and, alas, the resultant mastercurve does not seem to
be an accurate model for specific curves kas plotted in
fig. 32). Hence a warning: Use figure 33 for rough
estimates only. A key parameter in figure 33 is the n/v
ratio. Given the same n/v, the rate 1/2 and rate 3/4
inner codes lead to almost indistinguishable character-
istics, as far as the 0.9 RIRO, 0.5 RIRO' and 0.1 RIRO
points are concerned. One concludes that the 3/4 rate
inner code is preferrable, since it offers more through-
put for the above threshold operation.

It is seen from figures 32 and 33 that the Eb/N0
threshold occurs somewhere between 5 and 7 dB. More
precise numbers can be pinned down with the help of
methods and parameters presented earlier, but one wonders
about the relative errors inherent in such estimates and
the confidence levels they merit. Nevertheless, it is
significant to stress that an operational signal-to-noise
ratio, Eb/NO=6.5 dB, though it might be a ballpark figure,
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is still some 14 dB below the uncoded extrapolated-measured
requirement for the 10“12 error rate level (McManamon et al.
1974). And, if uncoded operation were to be unsatisfactory
due to irreducible error rate effects (see also earlier

sec. 3.6), then error control coding would indeed become
indispensable.

A brief final comment concerning figure 33 and the
slight advantage of the rate 3/4 inner code. Perhaps,
further increase of RI could yield even better results.
Taken to the ultimate limit, RI+1, can one then discard
the inner coder and the entire concatenated hybrid scheme?
A simple check with figure 14, however, tells a different
story. To operate at the required Pe level, the ARQ outer
code by itself (i.e., without the inner code) would require
Eb/N0 somewhere between 10 and 12 dB to stay above the
threshold. Thus, a good inner FEC code is needed to provide
reliable transmissions down to Eb/NOEG dB. As mentioned
earlier, this figure includes the 1-3 dB code rate loss,
but fails to reflect the 33 percent to 100 percent band-
width expansion (or transmission rate reduction).

6. CONCLUSIONS

Many coding alternatives have been considered here.
The less suited ones were dismissed with little comment,
the better ones were scrutinized in more detail. An
alleged "first choice" error control code was selected.
It turned out to be a hybrid of forward error correction
(FEC) and automatic repeat request (ARQ), implemented by
concatenation of two codes: an inner convolutional code
with Viterbi decoding and an outer error detecting block

code. To be certain that our chosen code is as good as it




appears, we have delved quite intensely in all its technical
aspects. Features such as implementation, operational
principles, present day state-of-the-art, costs, complexities,
robustness, versatility, and the expected performance on
realistic channels have been compiled, reviewed, and in
some cases computed anew.

The main advantage of the selected codec is to ensure,
with high confidence, practically error free operation.
It can do so at its nominal throughput rate, as long as the
normalized signal-to-noise ratio, Eb/N0 (dB) , exceeds
roughly 6 dB. If, due to a sudden fade, the signal-to-
noise ratio falls below the threshold, the codec will
effectively interrupt the data flow and stop delivery of
erroneous digits.

The main disadvantage of the scheme is the need to
transmit and process redundant bits. If the modems and
the link bandwidths are fixed, the only way to accommodate
additional bits is to reduce the information throughput.
To maintain constant information throughput, on the other
hand, requires bandwidth expansion. The additional occupied
bandwidth is given by (1-R)/R, where R is the overall
throughput rate. Thus, a 33 percent expansion appears
necessary for R=3/4 and the system given. The second dis-
advantage of introducing codecs is the burden of the
devices themselves. Fortunately, the coding scheme
selected can be simply implemented. Whether viewed in
hardware or software sense, the added system is of the same
complexity as a mini-computer.

A final unresolved item concerns the random queues
and delays caused by the ARQ on the long-delay satellite
links. The strategy and proper handling of these possibly

large queues is a complex, interrelated process involving
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some balance between data processing and communications.
System studies of these queues, particularly for network
applications, will require computer simulation because of

the analytical complexities discussed in this report.
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